پویانفر، احمد و موسوی، سید حمید (1395). تخمین ارزش در معرض ریسک دادههای درونروزی با رویکرد EVT-COPULA. مدلسازی ریسک و مهندسی مالی، دوره 1، شماره 2، 144-129.
راغفر، حسین و آجرلو، حسین (1395). برآورد ارزش در معرض خطر پرتفوی ارزی یک بانک نمونه با روش GARCH-EVT-Copula. فصلنامه پژوهشهای اقتصادی ایران، دوره 21، شماره 67، 141-113.
فلاحپور، سعید و باغبان، مهدی (1393). استفاده از کاپیولا-CVaR در بهینهسازی سبد سرمایهگذاری و مقایسه تطبیقی آن با روش Mean-CVaR. فصلنامه پژوهشها و سیاستهای اقتصادی، دوره 22، شماره 72، 172-155.
کشاورزحداد، غلامرضا و حیرانی، مهرداد (1393). برآورد ارزش در معرض ریسک باوجود ساختار وابستگی بین بازدهیهای مالی: رهیافت مبتنی بر کاپولا. فصلنامه تحقیقات اقتصادی، دوره 49، شماره 4، 902-869.
Autchariyapanitkul, K., Chanaim, S., & Sriboonchitta, S. (2014). Portfolio optimization of stock returns in high-dimensions: A copula-based approach. Thai Journal of Mathematics, 11-23.
Bauwens, L., Hafner, C. M., & Laurent, S. (2012). Handbook of volatility models and their applications (Vol. 3). John Wiley & Sons.
Bauwens, L., Laurent, S., & Rombouts, J. V. Rombouts (2006). Multivariate GARCH models: A survey. In Journal of Applied Econometrics.
Berkowitz, J. (2001, July). 2002, How accurate are value-at-risk models at commercial banks. In Journal of Finance.
Blanco, C., & Ihle, G. (1999). How good is your VaR? Using backtesting to assess system performance. Financial Engineering News, 11(8), 1-2.
Bob, N. K. (2013). Value at risk estimation. a garch-evt-copula approach. Mathematiska institutionen, 1-41.
Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. The review of economics and statistics, 498-505.
Boubaker, H., & Sghaier, N. (2013). Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach. Journal of Banking & Finance, 37(2), 361-377.
Caporin, M., & McAleer, M. (2012). Robust ranking of multivariate GARCH models by problem dimension.
Cappiello, L., Engle, R. F., & Sheppard, K. (2006). Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial econometrics, 4(4), 537-572.
Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons.
Cherubini, U., Mulinacci, S., Gobbi, F., & Romagnoli, S. (2011). Dynamic copula methods in finance. John Wiley & Sons.
Chollete, L., De la Pena, V., & Lu, C. (2006). Security comovement: Alternative measures, and implications for portfolio diversification. Unpublished Working paper). Columbia University and NHH.
Christoffersen, P. F. (1998). Evaluating interval forecasts. International economic review, 841-862.
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151.
Danielsson, J. (2011). Financial risk forecasting: the theory and practice of forecasting market risk with implementation in R and Matlab (Vol. 588). John Wiley & Sons.
Deng, L., Ma, C., & Yang, W. (2011). Portfolio optimization via pair copula-GARCH-EVT-CVaR model. Systems Engineering Procedia, 2, 171-181.
Dowd, K. (2007). Measuring market risk. John Wiley & Sons.
Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond, 1, 176-223.
Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22(4), 367-381.
Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350.
Engle, R. F., & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH (No. w8554). National Bureau of Economic Research.
Frank, M. J. (1979). On the simultaneous associativity ofF (x, y) andx+y− F (x, y). Aequationes mathematicae, 19(1), 194-226.
Ghalanos, A. (2015). The rmgarch models: Background and properties. R Package version 1.3.
Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55(292), 698-707.
Han, Y., Li, P., & Xia, Y. (2017). Dynamic robust portfolio selection with copulas. Finance Research Letters, 21, 190-200.
Holton, G. A. (2002). History of value-at-risk: 1922-1988. Working paper, 25.
Holton, G. A., (2003), Value-at-risk: Theory and practice, Academic Press. New York, Vol 2.
Hotta, L. K., Lucas, E. C., & Palaro, H. P. (2008). Estimation of VaR using copula and extreme value theory. Multinational Finance Journal, 12(3/4), 205-218.
Hu, L. (2006). Dependence patterns across financial markets: a mixed copula approach. Applied financial economics, 16(10), 717-729.
Huang, J. J., Lee, K. J., Liang, H., & Lin, W. F. (2009). Estimating value at risk of portfolio by conditional copula-GARCH method. Insurance: Mathematics and economics, 45(3), 315-324.
Hull, J. (2012). Risk management and financial institutions,+ Web Site (Vol. 733). John Wiley & Sons.
Jondeau, E., & Rockinger, M. (2006). The copula-garch model of conditional dependencies: An international stock market application. Journal of international money and finance, 25(5), 827-853.
Philippe, J. (2007). Value at risk: the new benchmark for managing financial risk. NY: McGraw-Hill Professional.
Kakouris, I., & Rustem, B. (2014). Robust portfolio optimization with copulas. European Journal of Operational Research, 235(1), 28-37.
Karmakar, M. (2017). Dependence structure and portfolio risk in Indian foreign exchange market: A GARCH-EVT-Copula approach. The Quarterly Review of Economics and Finance, 64, 275-291.
Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. The J. of Derivatives, 3(2).
Lopez, J. A. (1997). Regulatory evaluation of value-at-risk models. FRB of New York Staff Report, (33).
Mashal, R., & Zeevi, A. (2002). Beyond correlation: Extreme co-movements between financial assets. Unpublished, Columbia University.
McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of empirical finance, 7(3-4), 271-300.
Morimoto, T., & Kawasaki, Y. (2008). Empirical comparison of multivariate GARCH models for estimation of intraday value at risk. Available at SSRN 1090807.
Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International economic review, 47(2), 527-556.
Pérignon, C., & Smith, D. R. (2010). The level and quality of Value-at-Risk disclosure by commercial banks. Journal of Banking & Finance, 34(2), 362-377.
Pries, H. (2016). Market risk calculations in stock-and bond prices: a garch-copula approach.
Sampid, M. G., & Hasim, H. M. (2018). Estimating value-at-risk using a multivariate copula-based volatility model: Evidence from European banks. International economics, 156, 175-192.
Santos, A. A., Nogales, F. J., & Ruiz, E. (2013). Comparing univariate and multivariate models to forecast portfolio value-at-risk. Journal of financial econometrics, 11(2), 400-441.
Sheikh, A. Z., & Qiao, H. (2009). Non-normality of market returns: A framework for asset allocation decision making. The Journal of Alternative Investments, 12(3), 8-35.
So, M. K., & Philip, L. H. (2006). Empirical analysis of GARCH models in value at risk estimation. Journal of International Financial Markets, Institutions and Money, 16(2), 180-197.
Terzić, I., & Milojević, M. (2016). Risk model backtesting. Ekonomika, 62(1), 151-162.
Tsay, R. S. (2013). Multivariate time series analysis: with R and financial applications. John Wiley & Sons.
Tursunalieva, A., & Silvapulle, P. (2007). Assessing and modeling the changes in dependence between exchange rates. Working Paper of Monash University.