Document Type : Research Paper

Authors

1 Associate Professor, Department of Economics, Allameh Tabataba’i University, Tehran, Iran

2 M.A. , Department of Economics, Allameh Tabataba’i University, Tehran, Iran

Abstract

In this paper, in order to calculate portfolio market risk of 10 selected industries indices in Tehran Stock Exchange, two models of Value Risk (VaR) and Expected shortfall (ES) have been used. Different models of multivariate GARCH and various Coppola models have been used in order to estimate the volatility of the portfolio and nonlinear correlation of asset portfolio. Backtesting has been done by Kupiec, Christoffersen, Engle and Manganelli and McNeill and Ferry tests. Results show that the DCC-GARCH model by t-Student distribution compared to other competing models has the best results in estimating volatility of the asset portfolio. Also among all Copula models reviewed in this paper, t-student copula model has shown better results for estimating asset dependence. Finally, the results of backtesting of different models showed that both the DCC-GARCH model with t-Student distribution and DCC-GARCH-Copula with t-Student distribution have acceptable results in estimating VaR and ES. However, the Lopez and Blanco and Ihle tests showed that the DCC-GARCH model with t-Student distribution compared to the DCC-GARCH-Copula model with t-Student distribution gives a more accurate and efficient estimate of the VaR and ES of asset portfolios.

Keywords

پویان‏فر، احمد و موسوی، سید حمید (1395). تخمین ارزش در معرض ریسک داده‏های درون‏روزی با رویکرد EVT-COPULA. مدل‌سازی ریسک و مهندسی مالی، دوره 1، شماره 2، 144-129.
راغفر، حسین و آجرلو، حسین (1395). برآورد ارزش در معرض خطر پرتفوی ارزی یک بانک نمونه با روش GARCH-EVT-Copula. فصلنامه پژوهش‏های اقتصادی ایران، دوره 21، شماره 67، 141-113.
فلاح‌پور، سعید و باغبان، مهدی (1393). استفاده از کاپیولا-CVaR در بهینه‏سازی سبد سرمایه‏گذاری و مقایسه تطبیقی آن با روش Mean-CVaR. فصلنامه پژوهش‏ها و سیاست‏های اقتصادی، دوره 22، شماره 72، 172-155.
کشاورزحداد، غلامرضا و حیرانی، مهرداد (1393). برآورد ارزش در معرض ریسک باوجود ساختار وابستگی بین بازدهی‏های مالی: رهیافت مبتنی بر کاپولا. فصلنامه تحقیقات اقتصادی، دوره 49، شماره 4، 902-869.
Autchariyapanitkul, K., Chanaim, S., & Sriboonchitta, S. (2014). Portfolio optimization of stock returns in high-dimensions: A copula-based approach. Thai Journal of Mathematics, 11-23.
Bauwens, L., Hafner, C. M., & Laurent, S. (2012). Handbook of volatility models and their applications (Vol. 3). John Wiley & Sons.
Bauwens, L., Laurent, S., & Rombouts, J. V. Rombouts (2006). Multivariate GARCH models: A survey. In Journal of Applied Econometrics.
Berkowitz, J. (2001, July). 2002, How accurate are value-at-risk models at commercial banks. In Journal of Finance.
Blanco, C., & Ihle, G. (1999). How good is your VaR? Using backtesting to assess system performance. Financial Engineering News11(8), 1-2.
Bob, N. K. (2013). Value at risk estimation. a garch-evt-copula approach. Mathematiska institutionen, 1-41.
Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. The review of economics and statistics, 498-505.
Boubaker, H., & Sghaier, N. (2013). Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach. Journal of Banking & Finance37(2), 361-377.
Caporin, M., & McAleer, M. (2012). Robust ranking of multivariate GARCH models by problem dimension.
Cappiello, L., Engle, R. F., & Sheppard, K. (2006). Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial econometrics4(4), 537-572.
Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons.
Cherubini, U., Mulinacci, S., Gobbi, F., & Romagnoli, S. (2011). Dynamic copula methods in finance. John Wiley & Sons.
Chollete, L., De la Pena, V., & Lu, C. (2006). Security comovement: Alternative measures, and implications for portfolio diversification. Unpublished Working paper). Columbia University and NHH.
Christoffersen, P. F. (1998). Evaluating interval forecasts. International economic review, 841-862.
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika65(1), 141-151.
Danielsson, J. (2011). Financial risk forecasting: the theory and practice of forecasting market risk with implementation in R and Matlab (Vol. 588). John Wiley & Sons.
Deng, L., Ma, C., & Yang, W. (2011). Portfolio optimization via pair copula-GARCH-EVT-CVaR model. Systems Engineering Procedia2, 171-181.
Dowd, K. (2007). Measuring market risk. John Wiley & Sons.
Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond1, 176-223.
Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics22(4), 367-381.
Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics20(3), 339-350.
Engle, R. F., & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH (No. w8554). National Bureau of Economic Research.
Frank, M. J. (1979). On the simultaneous associativity ofF (x, y) andx+y− F (x, y). Aequationes mathematicae19(1), 194-226.
Ghalanos, A. (2015). The rmgarch models: Background and properties. R Package version 1.3.
Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association55(292), 698-707.
Han, Y., Li, P., & Xia, Y. (2017). Dynamic robust portfolio selection with copulas. Finance Research Letters21, 190-200.
Holton, G. A. (2002). History of value-at-risk: 1922-1988. Working paper, 25.
Holton, G. A., (2003), Value-at-risk: Theory and practice, Academic Press. New York, Vol 2.
Hotta, L. K., Lucas, E. C., & Palaro, H. P. (2008). Estimation of VaR using copula and extreme value theory. Multinational Finance Journal12(3/4), 205-218.
Hu, L. (2006). Dependence patterns across financial markets: a mixed copula approach. Applied financial economics16(10), 717-729.
Huang, J. J., Lee, K. J., Liang, H., & Lin, W. F. (2009). Estimating value at risk of portfolio by conditional copula-GARCH method. Insurance: Mathematics and economics45(3), 315-324.
Hull, J. (2012). Risk management and financial institutions,+ Web Site (Vol. 733). John Wiley & Sons.
Jondeau, E., & Rockinger, M. (2006). The copula-garch model of conditional dependencies: An international stock market application. Journal of international money and finance25(5), 827-853.
Philippe, J. (2007). Value at risk: the new benchmark for managing financial risk. NY: McGraw-Hill Professional.
Kakouris, I., & Rustem, B. (2014). Robust portfolio optimization with copulas. European Journal of Operational Research235(1), 28-37.
Karmakar, M. (2017). Dependence structure and portfolio risk in Indian foreign exchange market: A GARCH-EVT-Copula approach. The Quarterly Review of Economics and Finance64, 275-291.
Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. The J. of Derivatives3(2).
Lopez, J. A. (1997). Regulatory evaluation of value-at-risk models. FRB of New York Staff Report, (33).
Mashal, R., & Zeevi, A. (2002). Beyond correlation: Extreme co-movements between financial assets. Unpublished, Columbia University.
McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of empirical finance7(3-4), 271-300.
Morimoto, T., & Kawasaki, Y. (2008). Empirical comparison of multivariate GARCH models for estimation of intraday value at risk. Available at SSRN 1090807.
Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International economic review47(2), 527-556.
Pérignon, C., & Smith, D. R. (2010). The level and quality of Value-at-Risk disclosure by commercial banks. Journal of Banking & Finance34(2), 362-377.
Pries, H. (2016). Market risk calculations in stock-and bond prices: a garch-copula approach.
Sampid, M. G., & Hasim, H. M. (2018). Estimating value-at-risk using a multivariate copula-based volatility model: Evidence from European banks. International economics156, 175-192.
Santos, A. A., Nogales, F. J., & Ruiz, E. (2013). Comparing univariate and multivariate models to forecast portfolio value-at-risk. Journal of financial econometrics11(2), 400-441.
Sheikh, A. Z., & Qiao, H. (2009). Non-normality of market returns: A framework for asset allocation decision making. The Journal of Alternative Investments12(3), 8-35.
So, M. K., & Philip, L. H. (2006). Empirical analysis of GARCH models in value at risk estimation. Journal of International Financial Markets, Institutions and Money16(2), 180-197.
Terzić, I., & Milojević, M. (2016). Risk model backtesting. Ekonomika62(1), 151-162.
Tsay, R. S. (2013). Multivariate time series analysis: with R and financial applications. John Wiley & Sons.
Tursunalieva, A., & Silvapulle, P. (2007). Assessing and modeling the changes in dependence between exchange rates. Working Paper of Monash University.