نویسندگان

1 عضو هیات علمی موسسه عالی آموزش بانکداری ایران

2 دانشیار گروه اقتصاد، دانشکده علوم اقتصادی دانشگاه علامه طباطبائی

چکیده

براساس توافقنامه بال 2، تسهیلات پرداختی به اشخاص حقیقی و بنگاه‌های اقتصادی کوچک و متوسط تحت عنوان پرتفوی اعتباری خرد تعریف شده است و بانک‌ها مجازند یکی از رویکردهای استاندارد یا رتبه‌بندی داخلی را برای تعیین سرمایه مورد نیاز به‌منظور مواجهه با ریسک اعتباری انتخاب کنند. پیاده‌سازی رویکرد رتبه‌بندی داخلی، مستلزم طبقه‌بندی تسهیلات خرد به طبقات همگن ریسکی و تخمین پارامترهای ریسک اعتباری در سطح هر یک از طبقات است. به‌طور خاص، تابع سرمایه مورد نیاز براساس این رویکرد، برای هر یک از تسهیلات تابعی از احتمال نکول (PD) و ارزش مشروط به نکول (LGD) هر قرض‌گیرنده است. به‌ازای سطح معین LGD، شکل ریاضی تابع سرمایه مورد نیاز نسبت به احتمال نکول در بازه‌ای گسترده، مقعر است. به دلیل تقعر تابع سرمایه مورد نیاز، افزایش دقت در طبقه‌بندی تسهیلات به طبقات همگن ریسکی برای بانک‌ها صرفه‌جویی سرمایه‌ای به همراه خواهد داشت. در این مطالعه، با استفاده از روش درخت طبقه‌بندی و رگرسیون تسهیلات دریافتی 1343 نفر از مشتریان حقیقی خرد یکی از بانک‌های خصوصی کشور طی سال‌های 1391 تا 1392 به چند طبقه ریسکی همگن طبقه‌بندی شدند. نتایج تحقیق حاکی از آن است که با طبقه‌بندی دقیق‌تر مشتریان در سطح پنجم، سرمایه مورد نیاز برای مواجهه با ریسک اعتباری در مقایسه با سطح صفر می‌تواند حدود 44/0 درصد کاهش یابد.

کلیدواژه‌ها

بافنده زنده، علیرضا و رحیم رحیمی (1393)، «ارایه یک سیستم خبره فازی جهت اعتبارسنجی مشتریان حقیقی بانک» فصلنامه پژوهشنامه بازرگانی، 1393، شماره 73، زمستان، صص 27-1.
داداحمدی، دانیال و عباس احمدی (1393)، «رتبه‌بندی اعتباری مشتریان بانک با استفاده از شبکه عصبی با اتصالات جانبی»، فصلنامه توسعه مدیریت پولی و بانکی، سال دوم، شماره 3، تابستان، صص 28-1.
سبزواری، حسن، ایمان نوربخش و محمد امیدی‌نژاد (1389)، «کاربردهای مدل اعتبارسنجی، مدیریت پرتفوی اعتباری و قیمت‌گذاری وام»، نوزدهمین همایش بانکداری اسلامی، مؤسسه عالی آموزش بانکداری ایران.
سپهردوست، حمید و عادل برجیسیان (1392)، «برآورد احتمال نکول تسهیلات پرداختی بانک با استفاده از رگرسیون لاجیت»، فصلنامه علمی- پژوهشی سازمان برنامه و بودجه، سال نوزدهم، شماره 1، بهار، صص 52-31.
کاظمی، ابوالفضل، جواد قاسمی و وحید زندیه (1390)، «رتبه‌بندی اعتباری مشتریان حقیقی بانک‌ها با استفاده از مدل‌های مختلف شبکه‌های عصبی: مطالعه موردی یکی از بانک‌های خصوصی ایران»، فصلنامه علمی- پژوهشی مطالعات مدیریت صنعتی، سال نهم، شماره 23، زمستان، صص 161-131.
نیلساز، حمید، عبدالرحمن راسخ، علیرضا عصاره و حسنعلی سنایی (1386)، «کاربرد شبکه‌های عصبی در رتبه‌بندی اعتباری متقاضیان وام فروش اقساطی»، فصلنامه پژوهش‌های اقتصادی ایران، سال نهم، شماره 32، صص 110-85.
یداله‌زاده طبری، علی، عرفان معماریان و عاطفه نصیری (1393)، «شناسایی عوامل مؤثر بر احتمال عدم بازپرداخت تسهیلات اعتباری بانک‌ها (مورد مطالعه: مشتریان حقیقی صندوق مهر امام رضا (ع) شهرستان بابلسر)»، پژوهشنامه اقتصاد و کسب‌و‌کار، سال پنجم، شماره 1، تابستان، صص 28-15.
Allen, L., G. DeLong and A. Saunders (2004), “Issues in the Credit Risk Modeling of Retail Markets”, Journal of Banking & Finance, Vol. 28, pp. 727-752.
Altman, E.I., and G. Sabato, (2007), “Modeling Credit Risk for SMEs: Evidence from the U.S. Market”, Abacus, Vol. 43, No. 3, pp. 332-357.
BarNiv, R. and J. McDonald, (1999), “Review of Categorical Models for Classification Issues in Accounting and Finance”, Review of Quantitative Finance and Accounting, Vol. 13, No. 1, pp. 39-62.
Bellotti T, and J. Crook (2009), “Support Vector Machines For Credit Scoring and Discovery of Significant Features”, Exp Syst Appl, 36(2), 3302–3308. Vol. 36, No. 2, pp. 3302-3308.
Breiman, L., J.H. Friedman, R.A. Olshen and C.J. Stone (1984), Classification and Regression Trees, Chapman and Hall/CRC.
Capon, N. (1982), “Credit Scoring Systems: A Critical Analysis”, Journal of Marketing, Vol. 46, No. 2, pp. 82-91.
Claessens, S., J. Krahnen & W.W. Lang (2005), “The Basel II Reform and Retail Credit Markets”, Journal of Financial Services Research, Vol. 28, No. 1,  pp. 5-13.
Crook, J. N., Hamilton, R., and L. C. Thomas (1992), “The Degradation of the Scorecard Over the Business Cycle”. IMA Journal of Mathematics Applied in Business and Industry. Vol. 4, pp. 111–123.
Crook, J., Edelman D., and L. Thomas, (2007), “Recent Developments in Consumer Credit Risk Assessment”, European Journal of Operational Research, Vol. 183, No. 3, pp. 1447-1465.
Dinh, T. H. T. and S. Kleimeier, (2007), “A Credit Scoring Model for Vietnam’s Retail Banking Market”, International Review of Financial Analysis, Vol. 6, No. 5, pp. 571-495.
Espahbodi, H. and P. Espahbodi (2003), “Binary Choice Models and Corporate Takeover”, Journal of Banking and Finance, Vol. 27, pp. 549-574.
Fisher, R. A. (1936), “The Use of Multiple Measurements in Taxonomic Problems”, Annals of Eugenics, Vol. 7, No. 1, pp. 179-188.
Frydman, H., E.I. Altman and K. Duen-Li (1985), “Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress”, Journal of Finance, Vol. 11, pp. 269-291.
Galindo, J. and P. Tamayo (2000), “Credit Risk Assessment Using Statistical and Machine Learning: Basic Methodology and Risk Modeling Applications”, Computational Economics, Vol. 15, No. 1, pp. 107-143.
Jacobson, T. and K. Roszbach (2003), “Bank Lending Policy, Credit Scoring and Value-at-Risk”, Journal of Banking & Finance, Vol.27, No.4, pp. 615-633.
Lang, W.W., and A.M. Santomero (2004), “Risk Quantification of Retail Credit: Current Practices and Future Challenges”, Research Paper Series, Vol. 5, No. 13, Federal Reserve Bank of Philadelphia.
Lee, T. H., and S. Jung, (2000), “Forecasting Creditworthiness: Logistic vs. Artificial Neural Net”, The Journal of Business Forecasting Methods and Systems, Vol. 18, No. 4, pp. 28-30.
Ranganath S., and K. Arun (1997), “Face Recognition Using Transform Features and Neural Networks” Pattern Recogn, Vol. 30, No. 10, pp. 1615-1622.
Ripley, B.D. (2002), Pattern Recognition and Neural Networks, New York: Cambridge.
Schreiner, M. (2004), “Scoring Arrears at a Microlender in Bolivia”,  Journal of Microfinance ,Vol. 6, No. 2, pp. 65-88.
Steinberg, D. and P. Colla (1997), CART: Tree-Structured Non-Parametric Data Analysis, San Diego, CA: Salford Systems.
Tam K.Y., and M.Y. Kiang (1992), “Managerial Applications of Neural Networks: The Case of Bank Failure Predictions”, Management Science, Vol. 38, No. 7, pp. 926-947.
Tasche, Dirk (2003), A Traffic Lights Approach to PD Validation, Working Paper.http://cds.cern.ch/record/615087/linkbacks/ sendtrackback
Tseng F.M., and Y.C. Hu (2010), “Comparing Four Bankruptcy Prediction Models: Logit, Quadratic Interval Logit, Neural and Fuzzy Neural Networks”, Exp Syst Appl, Vol. 37, No. 3, pp. 1846-1853.
Vapnik, V. (2000), The Nature of Statistical Learning Theory. Berlin: Springer Science & Business Media.
Viganó, L. (1993), “A Credit Scoring Model for Development Banks” An  African Case Study. Savings and Development. Vol. 17, No. 4, pp. 441-482.
Zhang G., and R. Smyth (2009), “An Emerging Credit-Reporting System in China” Chin Econ, Vol. 42, No. 5, pp. 40-57.