نویسندگان
1 کارشناسی ارشد اقتصاد و انرژی از دانشگاه تهران
2 دانشجوی دکتری مهندسی عمران دانشگاه شیراز
3 دانشجوی کارشناسی ارشد اقتصاد نظری دانشگاه تهران
چکیده
توانایی کمنظیر شبکههای عصبی مصنوعی به عنوان ابزاری قدرتمند برای تحلیل و برآورد در حوزه علوم تجربی و مهندسی موجب شد تا مورد توجه اقتصاددانان قرار گیرد. در این پژوهش، پس از مرور پژوهشهای انجامشده در مورد توانایی پیشبینی مدلهای خود توضیح جمعی میانگین متحرک (ARIMA)[1]و شبکههای عصبی مصنوعی(ANN)[2] به مقایسه این دو روش برای پیشبینی قیمت روزانه نفت در دوره آوریل 1983 تا ژوئن 2005 پرداختهایم. افزون بر این، در این پژوهش پس از مدلسازی به وسیله شبکههای عصبی مصنوعی، به منظور تشخیص سهم مشارکت هر پارامتر ورودی در این مدل از تجزیه و تحلیل حساسیت استفاده کردهایم. با توجه به حجم وسیع به کارگیری اطلاعات روزانه قیمت جهانی نفت (بیش از 5500 روز اطلاعات) نتایج به دست آمده نشاندهنده برتری غیرقابل مقایسه مدل شبکههای عصبی مصنوعی نسبت به مدل ARIMA در پیشبینی قیمت روزانه نفت است.
1.Autoregressive Integrated Moving Average
[2].Artifical Neural Networks
کلیدواژهها