توکلی، سعید و آشتاب، الهام. (۱۴۰۲). مقایسه کارایی مدلهای یادگیری ماشین و مدلهای آماری در پیشبینی ریسک مالی. فصلنامه راهبرد مدیریت مالی، ۱۱(۱)، ۷۶–۵۳. https://doi.org/10.22051/jfm.2023.35240.2512
رحمانی، علی و اسماعیلی، غریبه. (1389). کارایی شبکههای عصبی، رگرسیون لجستیک و تحلیل تمایزی در پیشبینی نکول. اقتصاد مقداری (بررسیهای اقتصادی)، 7(4)، 151-172. https://doi.org/10.22055/jqe.2010.10640
موحدی نیا، اکبر و بهمئی، نوشین. (1394). تعیین نکول تسهیلات مشتریان حقوقی بهوسیله حداقل مربعات ماشین بردار پشتیبان بهبودیافته بر مبنای الگوریتم بهینهسازی تجمعی ذرات. کنفرانس بینالمللی پژوهشهای نوین در مدیریت، اقتصاد و حسابداری. http://irdoi.ir/103-440-857-466
Akerlof, G.A. (1970). The market for “lemons”: quality uncertainty and the market mechanism.
The Quarterly Journal of Economics,
84(3), 488–500.
https://doi.org/10.2307/1879431
Aldrich, J.H. & Nelson, F.D. (1984). Linear probability, logit, and probit models (Quantitative Applications in the Social Sciences No. 07-045). SAGE Publications.
https://doi.org/10.4135/9781412984744
Akinjole, A., Shobayo, O., Popoola, J., Okoyeigbo, O. & Ogunleye, B. (2024). Ensemble-based machine learning algorithm for loan default risk prediction. Mathematics, 12(21), 3423.
Bergstra, J. & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13, 281-305.
https://doi.org/ 10.5555/2503308.2188395
Bermudez, J.D., Gonzalez-Rivera, G. & Gonzalez, M. (2022). Machine learning approaches to credit risk modeling: A comparative analysis.
Journal of Risk and Financial Management,
15(4), 123.
https://doi.org/10.3390/jrfm15040123
Berrar, D. (2019). Cross-validation. In Encyclopedia of bioinformatics and computational biology (pp. 542–545). Elsevier.
Chen, T. & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794).
https://doi.org/10.1145/2939672.2939785
Feurer, M. & Hutter, F. (2019). Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds) Automated Machine Learning. The Springer Series on Challenges in Machine Learning. Springer, Cham.
https://doi.org/10.1007/978-3-030-05318-5_1
Fishman, G.S. (1973). Statistical analysis for queueing simulations. Management Science, 20(3), 363–369.
Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232.
G’ulomova, B.M.M. qizi. (2023). Bank loan allocation model based on credit risk prediction of SMEs.
Guo, C. (2016). Using machine learning techniques for credit risk modeling: Empirical evidence from China.
Journal of Financial Risk Management,
5(3), 1–12.
https://doi.org/10.4236/jfrm.2016.53005
Hand, D.J. & Henley, W.E. (1997). Statistical classification methods in consumer credit scoring: A review.
Journal of the Royal Statistical Society: Series A (Statistics in Society),
160(3), 523–541.
https://doi.org/10.1111/j.1467-985X.1997.00078.x
King, M., Zhu, Q. & Wang, T. (2021). Combining behavioral and financial data to improve credit scoring models: Evidence from a commercial bank.
Journal of Banking and Finance, 127, 106125.
https://doi.org/10.1016/j.jbankfin.2021.106125
Liao, L., Li, H., Shang, W. & Ma, L. (2022). An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural Networks.
ACM Transactions on Software Engineering and Methodology,
31(3), 1–40.
https://doi.org/10.1145/3506695
Movahedinia, A. & Bahmai, N. (2015). Determining the default of legal entity customers' facilities using improved support vector machine least squares based on particle swarm optimization algorithm. International Conference on New Researches in Management, Economics, and Accounting.
http://irdoi.ir/103-440-857-466 [In Persian].
Peykani, P., Sargolzaei, M., Sanadgol, N., Takalu, A. & Kamyabfar, H. (2023). Application of structural models (Merton and Geske) and machine learning models (random forest and gradient boosted trees) in predicting default risk of listed companies in the Iranian capital market. PLoS ONE, 18(11), e0292081.
Powers, D.M.W. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation.
Journal of Machine Learning Technologies,
2(1), 37–63
https://doi.org/10.9735/2229-3981
Probst, P., Boulesteix, A. & Bischl, B. (2018). Tunability: Importance of Hyperparameters of Machine Learning Algorithms.
Machine Learning Research, 20, 53:1-53:32.
https://doi.org/10.48550/arXiv.1802.09596
Rahmani, A. & Esmaeili, G. (2010). The efficiency of neural networks, logistic regression, and discriminant analysis in predicting default.
Quantitative Economics (Economic Studies),
7(4), 151-172.
https://doi.org/10.22055/jqe.2010.10640 [In Persian].
Robinson, N. & Sindhwani, N. (2024). Loan default prediction using machine learning. In 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) (pp. 1–5). IEEE.
https://doi.org/10.55041/IJSREM24519
Tavakoli, S. & Ashtab, E. (2023). Comparison of the efficiency of machine learning models and statistical models in predicting financial risk.
Quarterly Journal of Financial Management Strategy,
11(1), 53-76.
https://doi.org/10.22051/jfm.2023.35240.2512 [In Persian].
Uphade, D.B., Muley, A.A. & Chalwadi, S.V. (2024). Identification of most preferable machine learning technique for prediction of bank loan defaulters.
Indian Journal of Science and Technology,
17(4), 343-351.
https://doi.org/10.17485/IJST/v17i4.2978
van Rijsbergen, C.J. (1979). Information retrieval (2nd ed.). https://doi.org/10.1002/asi.4630300621