نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی صنایع گرایش بهینه‌سازی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار گروه مهندسی صنایع، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

مطالبات معوق یکی از آثار نامطلوب اعطای وام در موسسات مالی است که باعث ایجاد ریسک اعتباری می‌شود. دریافت تضامین می‌تواند این ریسک را تا حد زیادی کاهش دهد. این در حالی است که وام‌گیرندگان در ارائه تضامین مشکل دارند و گاهی قادر به ارائه تضامین کافی و معتبر به خصوص تضامین با ریسک پایین نیستند. در این پژوهش سه موضوع مهم شامل: ریسک اعتباری وام، مطلوبیت وام‌گیرندگان و ریسک نقدشوندگی تضامین در یک صندوق خصوصی مورد مطالعه قرار گرفته است. ابتدا فرآیند داده‌کاوی با استفاده از روش‌های طبقه‌بندی روی مجموعه‌ داده‌ها‌ی وام‌ها پیاده‌سازی شد و جنگل تصادفی با دقت پیش‌بینی 0/986 به عنوان روش منتخب برای ساخت مدل ترکیب تضامین واقع شد. منظور از ترکیب تضامین، ارائه دو یا چند نوع تضمین مختلف برای دریافت یک وام مشخص است. در ادامه با استفاده از روش جنگل تصادفی و ترکیب‌های تضامین واقعی در وام‌های موسسه مالی، دو مدل برای ایجاد ترکیب‌های تضامین ساخته ‌شد که خروجی آن‌ها ترکیبات تضامین با حداکثر نرخ نکول مورد پذیرش 10 درصد هستند. در آزمون‌های انجام ‌شده میانگین احتمال نکول کل ترکیبات قابل ‌قبول حداکثر 3/94 درصد  است در حالی که نرخ نکول کل وام‌های اعطایی برابر با 6/3 درصد است. مطلوبیت وام‌گیرندگان ناشی از ترکیب تضامین نیز از 4/22 به 4/6 افزایش یافته است. در مقایسه‌ مدل جاری دریافت تضامین و مدل‌‌های ایجاد شده نرخ نکول کاهش و مطلوبیت وام‌‌گیرندگان افزایش می‌یابد.

کلیدواژه‌ها

موضوعات

افشارنیا، الهام. (1400). تاثیر سامانه صیاد در کاهش صدور چک بلامحل. چهارمین کنفرانس بین المللی و پنجمین کنفرانس ملی حقوق و علوم سیاسی.  تهران.
 https://civilica.com/doc/1470533.
خوشنود، زهرا. (١٣٩٩). بررسی پیش نیازهای کارکرد موثر سامانه متمرکز ثبت وثایق منقول در ارتقای مدیریت ریسک بانک‌ها و دسترسی به اعتبار. فصلنامه روند، 26(85 و 86)، 45-69، https://www.noormags.ir/view/fa/articlepage/1831571.
سزاوار، محمدرضا و خزائی، علیرضا و اسلامیان، مجتبی. (1400). بررسی پدیده معوقات بانکی و مقایسه آن با برخی کشورها (با تاکید بر نقش قانون عملیات بانکی بدون ربا در ایران). فصلنامه پژوهش‌ها و سیاست‌های اقتصادی، (97)29، 282-263، http://qjerp.ir/article-1-2748-fa.html.
صدیقی، امیر. (1398). ارزیابی ریسک نکول وام‌های بانکی با درنظر گرفتن رفتار بازپرداخت. پایان‌نامه کارشناسی ارشد. دانشگاه فردوسی مشهد.
طراحیان، امیراعظم و اسدی، سعید. (1397) توسعه مدل سرمایه قانونی بازل در شرایط رکود اقتصادی، فصلنامه پژوهش‌های اقتصادی ایران، 23(76)، 159-184.
 https://doi.org/10.22054/ijer.2018.9516.
کریمی وردنجانی، رضا و حسن زاده، حسین. (1400). استخراج و رتبه‌بندی عوامل ایجاد مطالبات معوق نظام بانکی و ارائه راهکارهای پیشنهادی (1390-1398). فصلنامه راهبرد مدیریت مالی، 9، 63-41، https://sid.ir/paper/960456/fa.
محرابی، لیلا. (1394). آمار مطالبات غیر جاری در نظام بانکی کشور. فصلنامه تازههای اقتصاد، 144، 131-135، https://www.noormags.ir/view/ar/articlepage/1195710.
محمدی، محمدصادق و کریم زاده، مصطفی مهدی، بهنامه . (1399). احتمال نکول تسهیلات پرداختی اولین بانک قرضه های کوچک در استان هرات افغانستان، فصلنامه مدلسازی اقتصادی، 14، 79-100، https://sid.ir/paper/402625/fa.
وب‌گاه بانک مرکزی ایران. (1401). www.cbi.ir.
Abdou, H. A., Tsafack, M. D. D., Ntim, C. G., & Baker, R. D. (2016). Predicting creditworthiness in retail banking with limited scoring data. Knowledge-Based Systems, 103, 89-103.DOI: 10.1016/j.knosys.2016.03.023.
Abdou, H., Pointon, J., & El-Masry, A. (2008). Neural nets versus conventional techniques in credit scoring in Egyptian banking. Expert Systems with Applications, 35(3), 1275-1292.DOI:10.1016/j.eswa.2007.08.030
Afsharnia, E. (2021). The effect of Sayad system in reducing the issuance of bounced checks, 4th International Conference and 5th National Conference on Law and Political Science, Tehran.https://civilica.com/doc/1470533.[In Persian]
Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. European Journal of Operational Research, 222(1), 168-178, DOI:10.1016/j.ejor.2012.04.009.
Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the operational research society, 54(6), 627-635. https://www.jstor.org/stable/4101754.
Basel, I. I. (2004). Basel Committee on Banking Supervision, Bank for international settlements. BIS Economic Papers, (46).DOI:10.4236/me.2012.37109.‏
Bekhet, H. A., & Eletter, S. F. K. (2014). Credit risk assessment model for Jordanian commercial banks: Neural scoring approach. Review of Development Finance, 4(1), 20-28, DOI:10.1016/j.rdf.2014.03.002.
Berger, A. N., Espinosa-Vega, M. A., Frame, W. S., & Miller, N. H. (2011). Why do borrowers pledge collateral? New empirical evidence on the role of asymmetric information. Journal of Financial Intermediation, 20(1), 55-70, DOI:10.1016/j.jfi.2010.01.001.
Chang, S., Kim, S. D., & Kondo, G. (2015). Predicting default risk of lending club loans. Machine Learning, 1-5. http://cs229.stanford.edu/proj2015/199_report.pdf.
Chang, Y. C., Chang, K. H., & Wu, G. J. (2018). Application of eXtreme gradient  boosting trees in the construction of credit risk assessment models for financial institutions. Applied Soft Computing, 73, 914-920, DOI:10.1016/j.asoc.2018.09.029.
Davydenko, S. A., & Franks, J. R. (2008). Do bankruptcy codes matter? A study of defaults in France, Germany, and the UK. The Journal of Finance, 63(2), 565-608, DOI:10.1111/j.1540-6261.2008.01325.x.‏
Degryse, H., Karapetyan, A., & Karmakar, S. (2021). To ask or not to ask? Bank capital requirements and loan collateralization. Journal of Financial Economics, 142(1), 239-260.DOI:10.1016/j.jfineco.2021.05.017.
Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., ... & Zupan, B. (2013). Orange: data mining toolbox in Python. the Journal of machine Learning research, 14(1), 2349-2353. https://jmlr.org/papers/volume14/demsar13a/demsar13a.pdf.
Dzik-Walczak, A., & Heba, M. (2021). An implementation of ensemble methods, logistic regression, and neural network for default prediction in Peer-to-Peer lending. Zbornik radova Ekonomskog fakulteta u Rijeci: časopis za ekonomsku teoriju i praksu, 39(1), 163-197. DOI: ‏ ://doi.org/10.18045/zbefri.2021.1.163.
Hand, D. J., & Henley, W. E. (1997). Statistical classification methods in consumer credit scoring: a review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 160(3), 523-541, https://www.jstor.org/stable/2983268.
He, H., Zhang, W., & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Systems with Applications, 98, 105-117, DOI:10.1016/j.eswa.2018.01.012.
Imtiaz, S., & Brimicombe, A. J. (2017). A better comparison summary of credit scoring classification. International journal of advanced computer science and applications, 8(7), DOI:10.14569/IJACSA.2017.080701.
Iran bank website, www.worldbank.org (2022).
Karimi Vardanjani, & Hassanzadeh. (2021). Extraction and ranking of the factors causing the outstanding claims of the banking system and providing suggested solutions (1390-1398). Financial Management Strategy, 9(2), 63-41, https://sid.ir/paper/960456/fa. [In Persian]
Khoshnod, Z. (2019). Prerequisites for the functioning of the centralized system for the registration of movable assets in the promotion of banks' risk management and access to credit. the process, 85 and 86, 45-69, https://www.noormags.ir/view/fa/articlepage/1831571. [In Persian]
Kumar, M., & Yadav, G. C. (2013). Liquidity risk management in bank: a conceptual framework. AIMA journal of management & research, 7(2/4), 0974-497.https://apps.aima.in/ejournal_new/articlesPDF/Manish-Kumar.pdf.
Lahsasna, A., Ainon, R. N., & Teh, Y. W. (2010). Credit Scoring Models Using Soft Computing Methods: A Survey. Int. Arab J. Inf. Technol., 7(2), 115-123. https://www.researchgate.net/publication/220413948_Credit_Scoring_Models_Using_Soft_Computing_Methods_A_Survey.
Lee, T. S., Chiu, C. C., Lu, C. J., & Chen, I. F. (2002). Credit scoring using the hybrid neural discriminant technique. Expert Systems with applications, 23(3), 245-254.DOI:10.1016/S0957-4174(02)00044-1.
Love, I., Martínez Pería, M. S., & Singh, S. (2016). Collateral registries for movable assets: does their introduction spur firms’ access to bank financing?. Journal of Financial Services Research, 49(1), 1-37.DOI: 10.1007/s10693-015-0213-2.‏
Mahapatra, B. (2012). Implications of Basel III for capital, liquidity and profitability of banks. RBI Monthly Bulletin. https://www.bis.org/review/r120305b.pdf.
Malekipirbazari, M., Aksakalli, V. (2015). Risk assessment in social lending via random forests. Expert Systems with Applications, 42, 4621–4631. DOI: 10.1016/j.eswa.2015.02.001
Mehrabi,L. (2014). statistics of non-current claims in the country's banking system. Economic News Quarterly, 144, 1394, 131-135. https://www.noormags.ir/view/ar/articlepage/1195710. [In Persian]
Mirza, N., Rahat, B., Naqvi, B., & Rizvi, S. K. A. (2020). Impact of Covid-19 on corporate solvency and possible policy responses in the EU. The Quarterly Review of Economics and Finance. DOI:10.1016/j.qref.2020.09.002.
Mohammadi, M., Karimzadeh, M., & Mahdi, B. (2019). the probability of default of the first small loan bank in Herat province Afghanistan. Economic Modeling, 14, 79-100. https://sid.ir/paper/402625/fa. [In Persian]
Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and systems magazine, 6(3), 21-45. DOI:10.1109/MCAS.2006.1688199.
Rashid, A., & Jabeen, S. (2016). Analyzing performance determinants: Conventional versus Islamic banks in Pakistan. Borsa Istanbul Review, 16(2), 92-107, DOI: 10.1016/j.bir.2016.03.002.
Sedihgi, A.(2020). Analyzing risk of default of loans by considering behavioral payback. M. Sc. Thesis. Ferdowsi University of Mashhad. [In Persian]
Sezawar, Khazaei, & Islamian. (2021). Examining the phenomenon of bank arrears and comparing it with some countries (with an emphasis on the role of the law on usury-free banking operations in Iran). Quarterly journal of economic research and policies, 29(97), 263-282. http://qjerp.ir/article-1-2748-fa.html. [In Persian]
Steijvers, T., Voordeckers, W., & Vanhoof, K. (2010). Collateral, relationship lending and family firms. Small Business Economics, 34(3), 243-259, DOI:10.1007/s11187-008-9124-z.
Tarrahian, A., & Asadi, S. (2018). Development of the Basel legal capital model in economic recession conditions. Iranian Journal of Economic Research, (76)23, 159-184, https://doi.org/10.22054/ijer.2018.9516. [In Persian]
Trad, N., Trabelsi, M. A., & Goux, J. F. (2017). Risk and profitability of Islamic banks: A religious deception or an alternative solution?. European Research on Management and Business Economics, 23(1), 40-45, DOI: 10.1016/j.iedeen.2016.09.001.
Tsai, K., Ramiah, S., & Singh, S. (2014). Peer lending risk predictor. CS229 Autumn, DOI:10.13140/2.1.4810.6567.
Tsai, M. C., Lin, S. P., Cheng, C. C., & Lin, Y. P. (2009). The consumer loan default predicting model–An application of DEA–DA and neural network. Expert Systems with applications, 36(9), 11682-11690, DOI: https://doi.org/10.1016/j.eswa.2009.03.009.
Wang, G., Hao, J., Ma, J., & Jiang, H. (2011). A comparative assessment of ensemble learning for credit scoring. Expert systems with applications, 38(1), 223-230, DOI:10.1016/j.eswa.2010.06.048.
World bank website, www.worldbank.org (2022).
Wu, D., & Olson, D. L. (2010). Enterprise risk management: coping with model risk in a large bank. Journal of the Operational Research Society, 61(2), 179-190, DOI:10.1057/jors.2008.144.
Yeh, I. C., & Lien, C. H. (2009). The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert systems with applications, 36(2), 2473-2480.DOI: 10.1016/j.eswa.2007.12.020.
Zheng, C., & Zhang, J. (2021). The impact of COVID-19 on the efficiency of microfinance institutions. International Review of Economics & Finance, 71, 407-423, DOI:10.1016/j.iref.2020.09.016.