Authors

Abstract

In this paper, a nonparametric logit modelling was introduced to estimate the probability of participation of Iranian female labour using household income-expended in 2008. The logistic function for women’s participation was regressed based on the maximum likelihood estimator that the geographical location (urban/rural), husband’s income, education, female age, non-labour income, number of children above and under six years were implemented for input variables. The accuracies of the logit models based on the parametric and nonparametric modeling approaches were evaluated using White statistic, confidence index, and root mean square error. Finally, the marginal effects of input variables on women’s probability of participation were estimated based the results of calibrated unknown coefficients of parametric and nonparametric models. The results demonstrated that nonparametric logit model is more accurate than parametric logit model. Education and number of child under six years have effective positive and negative effects compared to another input variables, respectively.
 

Keywords

مرکز آمار ایران، سالنامه آماری کشور، سال 1388.
سارانی، زینب، بهروز کشته‌گر و غلامرضا کشاورزحداد (1393)، «مشارکت زنان متأهل در بازار کار ایران: مدل‌سازی غیرخطی تابع لاجیت»، فصلنامه مدل‌سازی اقتصادی، سال هشتم، شماره 3، صص 134-115.
کشاورزحداد، غلامرضا و مرتضی باقریقنبرآبادی (1390)، «تحلیل احتمال مشارکت زنا نشهری وروستایی ایران در بازار کار با استفاده ازروش‌های اقتصادسنج یپارامتریک و ناپارامتریک»، مجلهتحقیقاتاقتصادی، سال ششم، شماره 96، صص 174-151.
کشاورزحداد، غلامرضا و آرش علویان قوانینی (1391)، «شکاف جنسیتی دستمزد در مناطق شهری ایران»، فصلنامه پژوهش‌های اقتصادی ایران، فصلنامه علمی- پژوهشکده علوم اقتصادی، سال هفدهم، شماره 53، صص 133-101.
کولایی، الهه (1383)، «جنسیت و توسعه در کشورهای خاورمیانه و شمال آفریقا»، مرکز پژوهش‌های مجلس شورای اسلامی.
موحدی، بهروز (1381) )، «چالش‌های اشتغال زنان در ایران»، ماهنامه حقوق زنان، سال چهارم، شماره 21، صص 8 -3.
Bera, A. K., and Bilias, Y. (2001), “Rao’s Score, Neyman’s C (α) and Silvey’s LM tests:An Essay on Historical Developments and Some New Results”, Journal of StatisticalPlanning and Inference, vol. 97, pp. 9-44.
Berulava, G., and Chikava, G. (2012), “The Determinants of Household Labor Supplyin Georgia, France and Romania:a Comparative Study”. Eurasian Journal of Business and Economics, vol. 5, no.9, pp.141-164.
Bianco, A.M., and Martínez, E. (2009), “Robust Testing in the Logistic Regression Model”, Computational Statistics and Data Analysis, vol. 53, pp. 4095-4105.
Carroll, R., Ruppert D., and Welsh, A. (1998), “Local Estimating Equations”, Journal of American StatisticalAssociation, vol. 93, pp. 214–27.
Chiappori, P.A. (1988), “Rational Household Labor Supply”, Econometrica, vol. 56, pp. 63-89.
Chiappori, P.A., (1992), “Collective Labor Supply and Welfare”, Journal of Political Economy,vol. 100, pp. 437-67.
Donni O., and Moreau, N. (2007), “Collective Labor Supply: a Single-Equation Model and SomeEvidence from French Data”, The Journal of Human Resources, vol. XLII, pp. 214-246.
Frolich, M. (2006), “Non-parametric Regression for Binary Dependent Variables”,Econometrics Journal, vol. 9, pp. 511–540.
García, J., and María J. S. (2002), “Female Labor Supply in Spain: The Importance of Behavioural Assumptions and Unobserved Heterogeneity Specification”, Department of Pampeu Fabra.
Gerfin, M. (1996), “Parametric and Semi-parametric Estimation of the Binary Response Model of Labor Market Participation”, Journal of Applied Econometrics, vol. 11, pp. 321–39.
Gong, X., and van Soest, A. (2000), “Family Structure and Female Labour Supply in Mexico City”, IZA Discussion, Paper No: 214.
Keshtegar, B., Piri. J., and Kisi, O. (2016), “A Nonlinear Mathematical Modeling of Daily Pan Evaporation based on Conjugate Gradient Method”, Computers and Electronics in Agriculture, vol. 127, pp. 120-30.
Killingworth, M.R., and Heckman, J. (1986), “Female Labor Supply: a Survey, In Handbook of Labor Economics. Vol. 1.O. Ashenfelter and R. Layard eds. Amsterdam: North-Holland, pp. 101–204.
Klein, R. and Spady, R. (1993), “An Efficient Eemi-ParametricEstimator for Binary Response Models”, Econometrica, vol. 6, no. 1, pp. 387–421.
Komarek, P. (2004), “Logistic Regression for Data Mining and High-Dimensional Classification”, Ph.D. Thesis. Carnegie Mellon University.
Leckner, M. (1991), “TestingLogit Models in Practice”, Empirical Economics, vol. 16, no. 2, pp. 177-198.
Maalouf, M., and Trafalis, T.B. (2011), “Robust Weighted kernel Logistic Regression in Imbalanced and RareEvents Data”, Computational Statistics and Data Analysis, vol. 55, pp. 168-183.
Willmott, C.J., and Matsuura, K. (1998), “On the Use of Dimensioned Measures of Error to Evaluate the Performance of Spatial Interpolators”, International Journal of Geographical, vol. 86, pp. 121-136.