Authors

1 Associate Professor , Economics, Faculty of Allame Tabataba’i University, Tehran, Iran

2 M.A. in Economics, Allame Tabataba’i University, Tehran, Iran.

Abstract

In recent years, by using extreme value theory (EVT), researchers have estimated the market risk for rare events (crises) more accurately. This paper examines the different methods of measuring market risk at different levels of reliability. According to the assumptions of the EVT methods, measuring the effects of the financial crises on the value of assets requires a lot of time-series observations. Therefore, this paper has used four indices: total index, industry index, the first market index and the second market index of the Tehran stock exchange. The backtesting results showed that among the various methods, semi-parametric approach or the EVT approach in comparison with parametric (EWMA, MA, GARCH) and nonparametric approaches (Historical simulation) is more efficient and has a higher level of reliability. Also HS method shows acceptable results at high confidence level, while in calculating the value at risk in the 0.90 and 0.95  confidence levels, parametric methods (EWMA, MA, GARCH) provide more reliable results. Also the richness of the  dynamics of GARCH and EWMA models are much more than the other models. In the next step by incorporating various models, the three models EWMA-EVT, GARCH-EVT and AWHS were made. Backtesting these three patterns showed that, AWHS and EWMA-EVT have provided the best results among various patterns, and have provided acceptable adequacy in estimating the value at risk at all levels of reliability. However; GARCH-EVT model shows acceptable results only in 0.999 reliability level. 

Keywords

زمانی، شیوا، سعید اسلامی بیدگلی و معین کاظمی (1392)، «محاسبه ارزش در معرض ریسک شاخص بورس اوراق بهادار تهران با استفاده از نظریه مقدار فرین»، بورس اوراق بهادار، سال ششم، شماره 21، صص 136- 115.
زمانی، شیوا و مجید علی‏فر (1393)، «برآورد ارزش در معرض ریسک شاخص صنعت فلزات اساسی تحت اثر شوک‌های نرخ ارز»، پژوهش‌های اقتصادی ایران، دوره نوزدهم، شماره 59، صص 210-183.
فلاح‌پور، سعید و مهدی یاراحمدی (1391)، «برآورد ارزش در معرض ریسک با استفاده از نظریه مقدار حدی در بورس اوراق بهادار تهران»، مهندسی مالی و مدیریت اوراق بهادار، دوره چهارم، شماره 13، صص 122– 103.
Bhattacharyya, M.(2008), "Conditional VaR Using EVT–Towards a Planned Margin Scheme", International Review of Financial Analysis, Volume 17, Issue 2, pp. 382–395
Danielsson, J (2011), Financial Risk Forecasting, Wiley.
Danielsson, J. de Vries, (1997), "Beyond the Sample: Extreme Quantile and Probability Estimation". Preprint, Tinbergen Institute, Rotterdam.
Embrechts P, Kuppelberg C, Mikosch T.(1997), "Modelling Extremal Events". Berlin: Springer Verlag.
Embrechts, P, Resnick, S, Samorodnitsky, G (1998), "Living on the Edge". Risk Magazine. Volume 11, Issue1, pp. 96–100
Embrechts, P., Resnick, S., Samorodnitsky, G., (1999), "Extreme Value Theory as a Risk Management Tool". North American Actuarial Journal. Volume 30, Issue2, pp. 30–41
Gencay, R, & Selcuk, F (2004), "Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets". International Journal of Forecasting, Volume 20, Issue2, pp. 287-303
Gnedenko, B.V (1943), "Sur la Distribution Limite du Terme Maximum d’une se´ Rie ale´ Atoire", Ann. of Math, Volume 44, Issue3, pp 423-453
Ho, L, Burridge, P, Cadle, J, & Theobald, M (2000), "Value-at-Risk: Applying the Extreme Value Approach to Asian Markets in the Recent Financial Turmoil". Basin Financial Journal, Volume 8, Issue2, pp 249-275
Hull C. J.(2015), Risk Management and Financial Institutions, 4th Edition, Wiley Finance.
Jansen, D, and de Vries, C.G. (1991), "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective", Review of Economics and Statistics, Volume 73, Issue 1, pp 18-24
Jenkinson AF (1955), "The Frequency Distribution of the Annual Maximum (or Minimum) of Meteorological Elements". Q J R Meteorol Soc Volume 81, Issue 348, pp 158-171
Jorion, Ph (2006), "Value at Risk: The New Benchmark for Managing Financial Risk", McGraw-Hill.
Karmakar, M and Shukla G, K (2015), "Managing Extreme risk in Some Major Stock Markets: An Extreme Value Approach", International Review of Economics & Finance Volume 35, pp 1-25
Kittiakarasakun, J and Tse, Y (2011) , "Modeling the Fat Tails in Asian Stock Markets", International Review of Economics & Finance Volume 20. Pp, 430-440
Koedijk, K.G, Schafgans, M. and de Vries, C.G. (1990), "The Tail Index of Exchange Rate Returns", Journal of International Economics, Volume 29, pp, 93-108
Kupiec, P, (1995), "Techniques for Verifying the Accuracy of Risk Measurement Models", J. Deriv, Volume 3, pp. 73–84
Longin, F, (2000), "From Value at Risk to Stress Testing, the Extreme Value Approach", Journal of Banking & Finance, Volume 24, Issue 7, pp 1097-1130
McNeil, A, (1998), "Calculating Quantile Risk Measures for Financial Return Series using Extreme Value Theory", preprint, ETH Zu¨rich.
McNeil, A, Frey, R, (2000), "Estimation of Tail-Related Risk Measures for Heteroscedastic Financial time series: an Extreme Value Approach". J. Empir. Finance Volume 7, pp. 271–300
McNeil, A, Saladin, T, (1997), "The Peaks Over Thresholds Method for Estimating High Quantiles of Loss Distributions", Proceedings of XXVIIth International ASTIN Colloquium, Cairns, Australia. pp. 23–43.
Singh K, Abhay, David E, Allen and Robert J. Powell (2013), "Extreme Market Risk and Extreme Value Theory", Mathematics and Computers in Simulation Volume 94, pp 310-328.
Smith RL. (1989), "Extreme Value Analysis of Environmental Time Series: an Application to Trend Detection in Ground-Level Ozone (with Discussion)", Stat Sci; Volume 4, pp. 367–393
Smith, RL. (1999), "Measuring Risk with Extreme Value Theory. Working Paper, Department of Statistics", University of North Carolina at Chapel Hill.
Tsay, Ruey S (2010), "Analysis of Financial Time Series", 3rd Edition, Wiley.
Tsay, Ruey S.,(2013) "An Introduction to Analysis of Financial Data with R", 1st Edition, Wily.