Authors

Abstract

The purpose of this study is to calculate Value at Risk (VaR) of a selection of  bank's currency portfolio, using GARCH-EVT-Copula (GEC) approach. Today's main challenge of a banking system is to calculate and quantify  the risks that the system is encountered. There are numerous approaches to calculate the risks. Usually these approaches assume a common known distribution for the assets portfolio and generally a normal distribution is utilized for the experimental models. Nevertheless, the distributions of the assets are fat-tailed distribution and consequently normal distribution assumption may lead to inaccurate estimation. This article does not assume a specific asset distribution. This study applies autoregressive threshold variances (GJR-GARCH) for intertemporal individual's asset variable returns distribution. It also utilizes extreme value theory or the fat-tailed distributions and Coppola functions for all asset returns in an asset portfolio. In this study VaR is estimated using variance-covariance and historical simulation methods. Finally, in order to test the reliability of the applied models Kopic method is used. The sample data of the bank's currency portfolio consists of the market daily figures of the US Dollar, Japan's Yen, Turkish Lire, Emirate Dirham, Korean Won, and Euro exchange rates from March 21, 2007 till April 19, 2012. The results showed that the estimated VaR using GEC model is higher than the one estimated using the other two methods. They also show that reliability and precision of Kopic test is higher than those of variance-covariance and historical simulation models.
 

Keywords

خیابانی، ناصر و مریم ساروقی (1390)، «ارزش­گذاری برآورد VaR براساس مدل­های خانواده ARCH­»، پژوهش­های اقتصادی ایران، شماره 47.
راعی، رضا و علی سعیدی (1383)، مبانی مهندسی مالی و مدیریت ریسک، تهران، سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه‌ها (سمت).
رادپور، میثم و علی رسولی‌زاده (1388)، مدیریت ریسک بازار رویکرد ارزش در معرض خطر، نشر آگاه (دانشگاه تهران).
 
Autzner P, F. Delbean J,M. Eber, and D.Health (1999), “Coherent Measures of  Risk”,  Mathematical Finance, 9(3).
Beaver, W.H, and G. Parker.(1995),” Risk Management, Problems, and Solution”, New  York, MG Graw.
Enders, w (2004), “Applied Econometric Time Series”, Wiley.
Grouhy, Michel and Galai, Dan and mark Rebert (2001),” Risk Management”, New York,  MG Graw- Hill.
Jorion, Philippe (2003), “Financial Risk Manage”, Wiley.
McNeil, A.J. and R. Frey (2000),” Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series”, an Extreme Value Approach, Journal of Empirical Finance 7, Issues 3-4, November 2000.
Miller, D. E (2003), “The Fundamentals of risk Measurement”. Financial Analysts Journal, 59, 108–109.
Miskin, Frederic S, Eakins, Stanley G (2006),” Financial Markets and Institution”, Pearson Press.
Nelsen, R.B. (1999), “An Introduction to Copulas”, Lectures Notes in Statistics, 139, Springer Verlag, New York
Nystrom, K., Skoglund, J. (2002), “Univariate Extreme Value Theory”, GARCH and Measures of Risk, Preprint, Swedbank.
Pickands, J. (1975), “Statistical Inference Using Extreme Order Statistics”, Annals of Statistics, 3.