Authors

Abstract

Banks, on the one hand are involved with the challenge of inadequate cash to meet the customers’ needs and on the other hand, are reluctant to increase the costs resulting from the cash excess transfer. As a result, estimating the cash requirements of the bank's branches, according to their daily operations, which is considered as a multivariable system, is one of the most important issues in banking. In this regard, employing data mining, especially clustering methods and neural networks can help to increase the accuracy of estimating the cash required in branches. In this regard, Neural networks are considered significant in terms of flexibility, nonlinearity, greater tolerance to noise and independence from the basic assumptions about the input data.
In the present paper, 20 branches of Tejarat bank have been categorized in similar clusters, during the period 21/04/2014 and 22/09/2014, according to factors such as branch grade, the type of branches in terms of deposit or facility, the number of ATMs, stand-by branches. Then, considering the clustering results and the variables related to the cash of branches such as week days, payment/ deposit subsidy/ deposit interest days, holidays and official events, as well as the amount of cash used in ATMs, the suitable structure for the neural network has been identified to estimate the required cash via the error criteria and the required cash is accordingly estimated for different clusters. The results show that the neural network, considering the clustering results, can estimate the required cash of branches in different clusters with good performance with a mean absolute error of 5%.

Keywords

بهشتی،‌‌‌‌‌ شروین ‌‌(1389)،‌ مدلی برای پیش‌بینی نقدینگی مورد نیاز شعب بانک با استفاده از شبکه‌های‌ عصبی و پیاده‌سازی آزمایشگاهی آن، دانشکده حسابداری و مدیریت، دانشگاه علامه طباطبایی، پایان‌نامه کارشناسی‌ارشد.
 سعیدی، علی‌ و شعبانی‌مطلق، مریم (1389)،‌ «ریسک نقدینگی در صنعت بانکداری با استفاده از شاخص لاندای‌ امری»، فصلنامه بورس اوراق بهادار‌، ‌سال‌سوم، شماره‌12، صفحات 149-129.
 نوربخش، ایمان، حیدری، هادی و زواریان،‌ زهرا (1389)، «مدیریت نقدینگی وجوه نقد صندوق شعب با استفاده از مدل انتشار»، گزارش هفتم، پژوهشکده پولی و بانکی، بانک مرکزی جمهوری اسلامی ایران.
 Anderberg, M. (1973), Cluster Analysis for Applications, Academic Press.
 Bramer, M. (2007), Principles of Data Mining, Springer Verlag Berlin Heidelberg.
 Cardona, L. and M. L. Amaya‌‌ (2012),‌“Cash Management Cost Reduction Using Data Mining to Forecast Cash Demand and LP to Optimize Resources”, Memetic Comp‌,‌vol.4, pp.127-134.
 Gowda, K. and E. Diday‌‌‌‌ (1991),”Symbolic Clustering Using a New Dissimilarity Measure”, Pattern Recognition , vol.24, no.6 , pp. 567-578.
 Gower, J. (1971),‌“A General Coefficient of Similarity and Some of its Properties”, Bio Metrics ,vol. 27, pp. 857-874.
 Gower, J. (1966),‌“Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis”, Bio Metrics‌, vol.53 , pp. 315-328.
 Han, J. and M. Kamber, (2006), Data Mining: Concepts and Techniques, San Francisco: Morgan Kaufman.
 Hornik,K.,M. Stinchcombe and H.White‌‌(1989),“Multilayer Feedforward Networks are Universal Approximators”, Neural Networks‌, vol.‌2, pp.‌‌‌359-366.
 Hu, M., G. Zhang, and B. Patuwo (1998),“Forecasting with Artificial Neural Networks:The State of the Art”, International Journal of Forecasting , vol.14, pp. 35-62.
 Irie, B. and S. Miyake‌ (1988),“Capabilities of Three-layered Perceptrons”, In Proceedings of the IEEE International Conference on Neural Networks, vol. 1‌, pp. 641-648.
 Jain, A.‌ and R. Dubes‌ ‌(1988), Algorithms for Clustering Data, Prentice Hall.
 Kauffman, L. and P. Rousseeuw‌ (1990),‌ Finding Groups in Data: An Introduction to Cluster Analysis, New York: Wiley.
 Olson, D. L. and D. Delen‌ (2008), Advanced Data Mining Techniques, Springer Verlag Heidelberg.
 Premchand, K. and E. Walia‌ (2006), “Cash Forecasting: An Application of Artificial Neural Networks in Finance”, International Journal of Computer Science & Applications‌, vol.3 , no. 1, pp. 61-77.
 Sandipan, R. (2010),”Determining Optimal Cash Allocation at ICICI Bank Branches”, Mumbai: ICICI Bank, SAS Global Forum, pp. 1-13.
 Turban, E., J. Aronson, T. Liang, and R. Sharda‌ (2007),‌‌ Decision Support and Business Intelligence Systems, Pearson Education.
 Wang‌,‌‌ P. (2008), “Clustering and Classification Techniques for Nominal Data Application”, Dissertation, Department of Electronic and Engineering, City University of Hong Kong.