بررسی تأثیر حجم معاملات بر شاخص کل بورس اوراق بهادار تهران در دوره‌های رکود و رونق: کاربرد مدل انتقال رژیم مارکف

عباس کلانتری

نوید خلیل باک طبیب

تأیید پذیرش: ۱۳۹۳/۱/۲۵

تاریخ ارسال: ۱۳۹۳/۳/۱۱

چکیده

این پژوهش تأثیر حجم معاملات بر شاخص کل بورس اوراق بهادار تهران را با کیفیت بر دهه‌های رکود و رونق و با استفاده از مدل غیرخطی انتقال رژیم مارکف، مورد بررسی قرار می‌دهد. در این راستا، از داده‌های ماهانه شاخص کل و حجم معاملات بورس تهران در دوره زمانی ابتدای سال ۱۳۹۱ تا انتهای ماه بهره‌برداری گردید. نتایج پژوهش نشان می‌دهد که رابطه غیرخطی انتقال میان حجم معاملات و شاخص کل بورس تهران وجود دارد. حجم معاملات در هر دو رژیم رکود و رونق اثر معنی‌دار مثبت بر شاخص کل بورس اوراق بهادار تهران دارد، ولی این اثر در رژیم رونق بیشتر است. با این تجییه در هر دو وضعیت رکود و رونق بزار سهام، انتظار می‌رود که افزایش حجم معاملات سبب رشد شاخص کل بورس اوراق بهادار تهران گردد. از طرفی مقاله نتایج با شاهد تاریخی نشان می‌دهد که مدل انتقال رژیم مارکف سیگنال‌های رکود و رونق بورس تهران را به درستی مدل سازی می‌نماید. تهیه آزمون‌های استاندارد نیز بر کفایت و عملکرد مناسب مدل انتقال رژیم مارکف تأکید دارد. همچنین این مدل می‌تواند به دنبال تدریس در پرازش داخلی نمونه و توصیه خارج از نمونه شاخص کل بورس اوراق بهادار تهران توسط به جمله‌های ماهیت معنی‌دار VAR و ARIMA,

MAE، و

بر مبنای معیار

n.khpaktinat@gmail.com

1. کارشناس ارشد مدیریت MBA گرایش مالی دانشگاه گیلان

2. کارشناس ارشد اقتصاد دانشگاه اروپه
واژگان کلیدی: شاخص تیم، حجم معاملات، دوره‌های رکود و روند بازار سهام.

مدل انتقال رژیم مارکف.

1. مقدمه

بازار سهام بر حسب نحوه حرکت قیمت‌ها دارای دو حالت کلی رونق و رکود می‌باشد.1

 حالات رونق بازار سهام به شرایطی اطلاع می‌گردد که در آن انتظار رشد قیمت‌ها وجود دارد.

 در مقابل حالات رکودی وضعیتی است که انتظار سقوط قیمت‌ها وجود دارد. به بیانی دیگر روندهای توانایی کوتاه مدت قیمت‌ها باینگر وضعیت رونق و از طرفی روند نوتن‌تری کوتاه منفی قیمتی باینگر وضعیت رکود در بازار سهام است (ماهیو و همکاران، 2012). صرف نظر از عقل و قوه خودرو و رونق در بازار سهام، مدل‌سازی این جرخه‌ها از روی رفتار داده‌ها، برای تصمیمات سرمایه‌گذاری و ارزیابی و مدیریت ریسک حائز اهمیت بالایی است.

از طرفی دیگر، علاوه بر اهمیت مدل‌سازی سیکل‌های رکود و رونق بازار سهام،

شناسایی عوامل مؤثر بر تغییر یا تداوم وضعیت‌های رکود و رونق بازار سهام ضروری است.

انتظار می‌رود تغییر حجم خرید و فروش سرمایه‌گذاران با تأثیر بر عرضه و تقاضا و میزان تقدشوندگی سهام اثر قابل ملاحظه‌ای بر قیمت سهام و متعاقباً تغییر با تداوم سیکل‌های رکود و رونق بازار سهام داشته باشد (سان، 2003). با توجه به آنچه گفته شد، این مقاله در پی پاسخگویی به سوالات اساسی زیر است: چه مدلی برای تشخیص و مدل‌سازی دوره‌های رکود و رونق بازار سهام مناسب است؟ آیا حجم معاملات به پیش‌بینی قیمت سهام کمک می‌کند؟ می‌توان این سوالات رفتار معاملاتی سرمایه‌گذاران را طبقه بندی کنیم که قیمت سهام در حال رشد است و بر عکس در دوره‌هایی که قیمت سهام در حال کاهش است، اثرات معادلی بر قیمت سهام دارد و آیا این اثرات متفاوت است؟

مدل غیرخطی سرمایه‌گذاری انتقال رزیم مارکف 3 که اولین بار توسط همیلتون (1989) برای مدل‌سازی دوره‌های رکود و رونق اقتصادی امریکا بکار گرفته شد، ضمن مدل‌سازی

1. Bull and Bear market
2. Maheu, J.M. and Mccurdy, T.H. and Song,Y.
3. Sun, W.
4. Nonlinear Markov-Switching(MS) models
بررسی تأثیر حجم معاملات بر شاخص کل بورس اوراق بهادار...

سیگنال های رکود و رونق، با بهره‌گیری از مفهوم زنده‌بودن مدل انتقال قیمت سهام و حجم معاملات بهره‌مندی از اولین شواهد تجربی. نشان داد که مدل‌های غیرخطی نظری انتقال رژیم مدل‌ها با لحاظ تغییرات رژیمی رفتار داده‌های اقتصادی قادر نبودند تجاوبره‌بین حجم معاملات و قیمت سهام ساختار بازار مالی را معکس می‌کنند. این بر اساس گزارش‌های و شواهد تجربی رفتار معامله‌گران طی دوره‌های رکود و رونق بازار سهام نامضف است. (کاروسوف، ۱۹۸۷) مدل انتقال رژیم مدل‌ها قابلیت و عملکرد بهتری نسبت به مدل‌های ARDL و آزمون غیرخطی رخوددار است. بنابراین، این مقاله در تلاش برای رفع نواقص مطالعات پیشین، ضمن آزمون وجود رابطه غیرخطی برای قیمت سهام و حجم معاملات، دوره‌های رکود و رونق بورس اوراق بهادار تهران، با نگرش بر رابطه بین شاخص قیمت سهام و حجم معاملات و بهره‌گیری از مدل غیرخطی انتقال رژیم مدل‌ها، مدل‌های مورد سازی قرار می‌گیرد. این تلاش می‌تواند نتایجی را نشان دهد که این مدل از دقت بالاتری نسبت به این مدل‌ها برخورد حساس است.

1. Hamilton, J.
2. Karpooff, J.M.
3. Autoregressive Distributed Lags models
4. Vector Autoregressive Models
5. Granger Causality test
6. Autoregressive Integrated Moving Average (ARIMA) models
ساختار مقاله بدنی ترتیب است که در بخش بعدی موضوع بر پیشنهاد ارائه شده است. بخش سوم، به معرفی روش شناسی پژوهش اختصاصی می‌پردازد. در بخش چهارم، داده‌های مورد استفاده تیپ می‌گردد. بخش پنجم به گزارش افتاده‌های تجویز مقاله اختصاص دارد و سرانجام در بخش ششم، خلاصه و نتیجه‌گیری حاصل از تحقیق گزارش خواهد شد.

2. مبانی نظری

بازار سهام به شکل طبیعی جرخه‌های تجاری و شرايط اقتصادی را متعکس می‌کند. بر پایه نظریه اقتصادی و مالی، قیمت سهام براساس ارزش فعلي جریانات نتیجه انتظاری تعبین می‌گردد (هان و همکاران، 2009). از این رو هر عاملی که ارزش فعلي جریانات نتیجه انتظاری سهام را تأثیر فراهم کند به وضوح بر قیمت سهام اثرگذار خواهد بود.

بدين ترتيب زمانیکه اقتصاد در حال رشد و در دوره رونق باشد، قیمت سهام رسد پيدا خواهد نمود و برعكس در دوره‌هاي ركود اقتصادی قیمت سهام کاهش پيدا خواهد كرد. در اين ميان حجم معاملات به عنوان يكي از متغريهای اثرگذار بر قیمت سهام مورد توجه محققان بوده است بطوريكه، از دهه 1970 مطالعات نظری مختلف در تلاش برای تبیین رابطه صريح بين حجم معاملات و قيمت سهام بوده‌اند. با اين وجود، نظريات متندور در ديدگاه‌هاي مختلف اجاع روشن در پيش‌ بيني اين رابطه را ارائه نمى‌دهند.

دیدگاه عمده در این زمینه از دو كنال عرضه و تقاضا و نقدشوندگي سهام، تأثير حجم معاملات بر قيمت سهام را توجه مي‌نماید (ماند. 2003). بر پايه اين ديدگاه، افزایش حجم معاملات به معنای افزایش عرضه به خريد و فروش سهام است كه اين خود را افزایش تقاضا ي سهم سپر افزایش قيمت سهام مي‌گردد. از طرفي ديگر افزایش حجم معاملات با افزایش نقدشوندگي سهام (تسهيل در تبديل سهام به وجه نقد) ضمن كاهش شکاف بين

1. Expected Present Value of Cash Flow
2. Han, K.C. and Lee, S.H. and Suk, D.Y.
قیمت‌های درخواستی فروشندگان پیشنهادی خریدار‌اند. افزایش حجم معاملات با کاهش هزینه‌های تلف و انتقال در معاملات بزرگ، منجر به کاهش نوسانات قیمت سهام و در نتیجه کاهش ریسک افزایش جدایی و تقاضای سهام می‌گردد (سال 2003).

می‌توان دیگر نوعی از وجود برآم‌های افزایش حجم معاملات و تغییرات قیمت سهام را در حالی که سیستم افزایش در معاملات در بازار سهام، تنور‌های اختلاف نظر و مدل‌های نامتناهی دست‌بندی نمود (آتروودری و همکاران). بر پایه تنور‌های اطلاعات، جریان‌ها و اطلاعات ایجاد شده به حجم معاملات محاسبه می‌گردد. نتایج جریان‌ها و MDH اطلاعاتی (SIAH) می‌توانند که مشارکت کنندگان و فعالان بازار از اطلاعات نامتناهی برخوردارند. از این رو ورود اطلاعات جدید به بازار منجر به شکل‌گیری چندین وضعیت تعادلی ناباید ایجاد شود و جریان‌های اطلاعات در بازار سهام سبب می‌گردد تا حجم معاملات و بازدهی متفاوت شود. مجموعه‌ای از اطلاعات ممکن در هر مدل تغییرات ایجاد می‌شود و لذا رابطه‌ای دوباره بین آنها وجود دارد (آتروودری و همکاران، 1990). در واقع، تغییرات قیمت سهام و حجم معاملات به مجموعه‌ای از اطلاعات در دسترس بستگی دارند و بنابراین تغییرات انرژی به حجم معاملات واقعی است. در مقابل، سیستم پیش‌بینی ارتباط بین تغییرات قیمت سهام با حجم معاملات را در اختلاف عقاید بین سرمایه‌گذاران می‌دانند. برای محاسبه مدل‌های MDH و MDH افت‌های و انرژی مصرفی در تفاوت انتظار فعالان بازار نسبت به آینده دارد. تفاوت در انتظارات فعالان بازار سهام به دلیل

1. Spread
2. sequential arrival of information(SIAH)
3. Mixtures of Distributions Hypothesis(MDH)
4. Clark, P.K.
5. Dispersion of Beliefs Theories
بی بی‌های اقتصادی ایران/ شماره 58/ بهار 1392
189

عدم تقارن اطلاعات است. در واقع مجموعه‌های اطلاعاتی افراد مختلف، متفاوت است. اختلاف عقیده‌های پیامدهای قابل توجهی بر بazaar سهام دارد. در این رابطه هارپیس و کریپس (1978) معنی‌دار که بحراً جهانی مالی، چرخه‌های زکو و رونق و حساب‌های ایجاد شده در بزارهای مالی از عقب‌اند نامتهامان فردری نشان می‌گیرد. در بزار‌های سهامی که فعالیت در مورد سهام اختلاف نظر دارند، رفتار بورس‌بازارهای شکل می‌گیرد که تداوم آن سبب ایجاد رونق و نهایتاً حساب در بزار می‌گردد. از سوییگیر سنته سرم شاپ کاریوف (1987، 1988)، ایپس (1975) و چن (2012)، رابطه نامتهامان را بین قیمت سهام و حجم معاملات نتیجه گیری می‌کند.

3. مطالعات تجربی خارجی

علاوه بر مطالعات نظری، مطالعات تجربی نیز در زمینه رابطه بین تغییرات قیمت سهام و حجم معاملات از نتایج ناهمسان و منتفی با یکدیگر برخوردند. در جدول (1) خلاصه‌ای از چند مطالعه خارجی تجربی در این زمینه آورده شده است.

جدول 1. خلاصه مطالعات تجربی خارجی

<table>
<thead>
<tr>
<th>نویسنده و سال اجرای</th>
<th>تفریل زمانی و مکانی و روش تحقیق</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Harrison, Michael, and David M. Kreps</td>
<td></td>
</tr>
<tr>
<td>2. Epps, T.W.</td>
<td></td>
</tr>
<tr>
<td>3. Chen, Sh. Sh.</td>
<td></td>
</tr>
<tr>
<td>4. Huang, B.N. and Yang</td>
<td></td>
</tr>
<tr>
<td>5. Lee, B.S. and Rui, O.M.</td>
<td></td>
</tr>
</tbody>
</table>
بررسی تأثیر حجم معاملات بر شاخص کل بورس اوراق بهادار...

معاملات و موجودی زمینه خارجی

از اینجا حجم معاملات همانی و ممنوع

پر بارزی سهام آمریکایی، مدل VAR

بنگ بارزی سهام ناشی از بازار، کره

جیوی، فرانس و انگلستان

گرلیچ و همکاران (2006)

مدل‌گیری و تغییرات آسانی های ناهمسان

ارباب‌س

حجم معاملات تأپر معنا و متن بر

پر بارزی سهام در گروه بارزیهای سهام

مورد مطالعه دارد

رابطه غیرخطی و نامتناسب بین حجم

معاملات و قیمت سهام در دوره زمانی

سالیانه 1973 تا 2008 وجود دارد

منبع: مطالعات پیشین تجاری خارجی

همچنان که ملاحظه می‌گردد، مطالعات پیشین تجاری خارجی شامل تناوب مختلف و در

بعضی موارد متناقض می‌باشند. عوامل از مدل‌های خودرگرفتنی برداری و علت افتاده

شده است. با استفاده به جدول (1)، به نظر می‌رسد که نیمی‌توان به نک اجماع کلی از تناوب

ملئ معاملات تجاری خارجی دست پیدا کرد.

VI. مطالعات تجربی داخلی

در داخل کشور نیز مطالعات تجاری محدودی در رابطه با تأثیر حجم معاملات بر تغییرات

قیمت سهام صورت پذیرفته است. خلاصه‌ای از این مطالعات در جدول (2) آورده شده

است.

1. Statman, M., and Vorkink, K

<table>
<thead>
<tr>
<th>جدول ۲: خلاصه مطالعات تجربی داخلی</th>
<th>قلمرو زمانی و مکانی و روش تحقیق</th>
<th>نوسانگان و سال انجام</th>
</tr>
</thead>
<tbody>
<tr>
<td>خلاصه نتایج</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نتایج حاکی از وجود ارتباط همزمان</td>
<td>بورس اوراق بهادار تهران، آزمون</td>
<td>نجارزاده و زیبادوست (۱۳۸۵)</td>
</tr>
<tr>
<td>معنادار و ارتباط بازار بهاره بین حجم</td>
<td>عیلی گنجه و مدل VAR</td>
<td></td>
</tr>
<tr>
<td>معاملات و بازار بهاره در بورس اوراق بهادار تهران است</td>
<td></td>
<td></td>
</tr>
<tr>
<td>همگونی معناداری بین این دو متغیر</td>
<td>بورس اوراق بهادار تهران، مدل آوردی و همکاران (۱۳۹۰)</td>
<td></td>
</tr>
<tr>
<td>وجود نداشته، حجم معاملات عیلی گنجه</td>
<td>VAR</td>
<td></td>
</tr>
<tr>
<td>بازار بهاره است و لی عکس آن صادق</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیست</td>
<td></td>
<td></td>
</tr>
<tr>
<td>حجم معاملات تا حدودی از پیشینه</td>
<td>۷۵ شرکت عضو بورس اوراق بهادار تهران، مدل پروپیت</td>
<td></td>
</tr>
<tr>
<td>پیشینه جهت بازار بهاره برای شرکت‌های با حجم معاملات بالا برخوردار است</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منبع: مطالعات پیشین تجربی داخلی

در مطالعات تجربی داخلی تمرکز بر تأثیر اثرات خالی بین تغییرات قیمت سهام و حجم معاملات است و خلاص در بررسی تأثیر شرایط رکود و رونق بازار سهام بر رابطه بین این دو متغیر ملموس است. بعد ترتیب افزایش این مطالعه به لحاظ هدف و ابزار و مدل مورد استفاده در مطالعات پیشین تجربی داخلی می‌تواند مورد نظر قرار گیرد.

5. روش شناسی پژوهش

مدل غیرخطی انقلاب رژیم مارکف اولین بار توسط همیلتون (۱۹۸۹) توسعه پیدا کرده است. این مدل‌ها، ابرازی مناسب جهت مدل سازی سری زمانی که رفتارهای جنبان به فازهای مختلف دارند، فراهم می‌نماید. به روش آگه هدف مدل سازی دوره‌های رکود و رونق در روند متغیرهای سری زمانی باشد، مدل‌های انقلاب رژیم مارکف با تکیه بر مفهوم ویژگی زنجیره مارکف ۳ فرآیندهای تصادفی و در قلب ماتریس احتمال انتقال ۱۴ تا ۱۵

1. Hamilton, J.
2. Markov Chain
3. Probability Transition Matrix
پرورش تأثیر حجم معاملات بر شاخص گیاهی کلی بورس اوراق بهادار...

را مورد بررسی قرار می‌دهند. به این ترتیب که مدل انتقال رژیم مارکوف احتمال ماندگاری
در یک رژیم و گذش از یک رژیم به رژیم دیگر و را برآورد نموده و همچنین ضرایب
متفاوت اثرگذاری متغیرهای توضیحی را در رژیم‌های مختلف تعیین می‌زند. این ضرایب
اثرگذاری از درون فرآیند برازش مدل و بررسی رفتار داده‌های واقعی استخراج می‌گردد
و اساساً دوران‌های بسته.

در این مطالعه اگر فرض کنیم

P_t بایانگر شاخص قیمت سهام در یک رژیم معاملات
باشد، آنگاه یک مدل خودگردانی انتقال رژیم مارکوف از مربی به
صورت زیر معرفی می‌گردد:

$$P_t = \mu_s + \sum_{i=1}^{q} \beta_{i,s} P_{t-i} + \varphi_{s t} V_t + \varepsilon_t \quad (1)$$

در رابطه (1)، s_t بایانگر حالتی از متغیر واپسند است که s_t می‌باشد و
بایانگر تعداد رژیم‌های حداکثر متغیر واپسند است. زمانی‌که رگرسیون شماره (1) در دوره
زمانی t در رژیم k باشد، در این رژیم حجم معاملات V_t با ضرایب
سهام اثرگذار خواهد بود. به‌دین ترتیب به تعداد رژیم‌های حداکثر، حجم معاملات با ضرایب
متفاوت بر قیمت سهام اثرگذار خواهد بود. در صورتی که در رژیم حداکثر رکود و رونق
برای بازار سهام متغیر باشد، حجم معاملات به ترتیب دارای دو ضریب اثرگذاری مختلف

$0 \leq \varphi_{st} = \sum_{k=1}^{m} \beta_{k} + \alpha_{k} \leq 1$ به ترتیب در رژیم‌های رکود و رونق خواهد بود. بنابراین رابطه (1)
فرم خلاصه شده تعداد s_t معامله رگرسیون در رژیم برای تبین تأثیر حجم معاملات بر
مقدار معامله رگرسیون در رژیم s_t است. لازم به ذکر است که کلیه ضرایب اثرگذاری پارامترهای قابل برآورد
مدل شامل عرض از میدا و ضرایب اثرگذاری در رژیم‌های مختلف درون‌زا بوده و بر پایه
فرآیند برازش مدل از طریق روش حداکثر راستنمایی یا برآورد می‌گردد.

یکی از مهم‌ترین ویژگی‌های مدل های انتقال رژیم مارکوف این است که فرآیند می‌شود
متغیر حالتی S, یک فرآیند تصادفی با ویژگی زنجیره مارکوف است. بنابراین:

$$P \left(s_t = j \mid s_1, s_2, \ldots, s_{t-1} \right) = P \left(s_t = j \mid s_{t-1} = i \right) = P_{ij} \quad (2)$$

1. Maximum Likelihood Estimator (MLE)
رابطه (2) بین‌گیر احتمال انتقال از رژیم λ به رژیم λ از t به زمان t به است.
در حالت دو رژیم رکود و رونق ماتریس احتمال انتقال را می‌توان به صورت زیر تعیین کرد:

$$P = \begin{bmatrix} P_{11} & 1 - P_{11} \\ 1 - P_{11} & P_{11} \end{bmatrix}$$

(3)

در رابطه (3)، P_{11} به ترتیب نمایانگر احتمال ماندن گازی در رژیم‌های حادی رکود و رونق می‌باشد. در مقابل $1 - P_{11}$ به ترتیب احتمال گذشت از رژیم‌های حادی رکود و رونق به رژیم دیگر می‌باشد. به یکن ریاضی:

$$P \left(s_t = 1 \mid s_{t-1} = 1 \right) = P_{11}$$

(4)

$$P \left(s_t = 1 \mid s_{t-1} = 0 \right) = P_{12}$$

(5)

$$P \left(s_t = 0 \mid s_{t-1} = 1 \right) = 1 - P_{11}$$

(6)

$$P \left(s_t = 0 \mid s_{t-1} = 0 \right) = 1 - P_{12}$$

(7)

رابطه (4) احتمال ماندگاری در رژیم رونق را نشان می‌دهد. رابطه (5) بین‌گیر احتمال ماندگاری در رژیم رکود از رژیم رکود به رژیم رونق و رابطه (6) نمایانگر احتمال گذشت از رژیم رونق به رژیم رکود است. از طرفی اگر p_i به‌نحوی واقع شدن متغیر X_t از رژیم λ همان ماتریس احتمال انتقال یک مرحله‌ای است، در نهایت مجموعه

ماتریس احتمال حالت در لحظه زمانی t به صورت زیر تبیین می‌گردد:

$$\pi_t = [\pi_1, \pi_2, \ldots, \pi_m]$$

(8)

ثابت می‌گردد که در آن $\pi_{t+1} = P \pi_t$ و در حالت عمومی تر $\pi_{t+S} = P^S \pi_t$ (برایک، 2008)

که در آن P همان ماتریس احتمال انتقال یک مرحله‌ای است. در نهایت مجموعه

$$\theta = \{ \mu, \mu, \beta, \ldots, \beta, \phi, \phi, P, \lambda, \sigma, \sigma \}$$

(9)
که در آن اندیس صفر باعغر رژیم رکود و اندیس یک نشان دهنده رژیم رونق است.
روش برآورد مدل انتقال رژیم مارکف حداکثر راضی‌نمایی است (همیلتون، 1994). برای تنشکیل تابع راضی‌نمایی جهت برآورد پارامترهای مدل، از تعریف احتمال شرطی در آمار به صورت زیر بهره می‌گیریم:

\[P(P_t, s_t = f; \theta) = f(P_t | s_t = f; \theta)P(s_t = f; \theta) \quad (10) \]

از طرفی توزیع احتمال توأم \(P(y_t, s_t = f; \theta) \) را می‌توان با فرض آنکه جملات خطای مدل به صورت مستقل و یکسان و به شکل نرمال توزیع \(\theta \) شده‌اند، به صورت زیر تشکیل داد (همیلتون، 1994):

\[P(P_t, s_t = f; \theta) = \frac{\pi_t}{\sqrt{2\pi\sigma_i}} \exp \left(-\frac{(y_t - \mu_i)^2}{2\sigma_i^2} \right) \quad (11) \]

که در آن \(\pi_t \) جملات خطای مدل تحقیق برای حالتی است که در رژیم \(\theta \) واقع شده است. به‌دین تریب تابع راضی‌نمایی مدل به صورت زیر تعریف می‌گردد (همیلتون، 1994):

\[f(P_t; \theta) = \sum_{i=1}^{\text{سایه‌ها}} p(P_t, s_t = f; \theta) \quad (12) \]

با لگاریتم‌گیری از رابطه (12)، تابع لگاریتم راضی‌نمایی بدست می‌آید. تشکیل شروط مربوط با لگاریتم راضی‌نمایی اولین‌شیفت از تابع حاصل شده نسبت به پارامترهای مدل، برآورده‌گر حداکثر راضی‌نمایی از پارامترهای مدل را بدست می‌دهد. قبل از آنکه مدل تخمین زده شود، ابتدا با پیدای وجود رابطه غیرخطی مورد آزمون قرار گیرد. برای این منظور هنگام (1992) آزمون نسبت راضی‌نمایی را به این ترتیب ارائه نموده است. اگر 2 پیانگر مجموعه پارامترهایی که وابسته به ویژگی تغییر مارکف هستند باشد، فرضیه صفر این آزمون به صورت زیر مشخص می‌گردد:

\[H : \gamma = 0 \quad (13) \]

آماره این آزمون از تشکیل لگاریتم نسبت تابع راضی‌نمایی برای مدل بدون قید به مدل مقداد
نسبت به قید معادله شماره (13) بدست می‌آید. آماره این آزمون دارای توزیع کای دو با

1. Maximum Likelihood Estimator (MLE)
2. Normal Identical Independent Distributed (N.IID)
تعداد درجات آزادی برای تعداد پارامترهای مجموعه k می‌باشد. به‌دنبال این تردید نظریه، صفر این آزمون بایگان وجود رابطه غیرخطی است.

تپین داده‌ها و ترشیح قلمرو تحقیق

در این مقاله، از داده‌های ماهانه شاخص کل بورس اوراق بهادار تهران (TEPIX) و داده‌های ماهانه حجم معاملات صورت گرفته (برحسب میلیارد ریال) در بورس اوراق بهادار تهران در دوره زمانی ماه اول سال 1381 تا ماه نمه سال 1391 استفاده شده است. همه متون این هم‌واره، از آرشیپ و سایت سازمان بورس و اوراق بهادار تهران اخذ شده TEPIX شاخص‌های از اصلی نشاندهای بورس اوراق بهادار تهران است و برای فرمولی لسپرر و به صورت زیر محاسبه می‌گردد:

$$TEPIX_t = \frac{\sum_{i=1}^{n} p_itq_it}{\sum_{i=1}^{n} p_{i0}q_{i0}} \times 100$$

که در آن، n تعداد شرکتهای مشمول شاخص کل بورس است. همچنین p_{it} قیمت سهام شرکت t در سال i و q_{it} حجم معاملات صورت گرفته در سهام شرکت t در سال i است. از طرفی این شرکت t در دوره 4 ماه اتمام شده تعداد سهام شرکت t در دوره 4 ماه است. از طرفی با کمک می‌باشد را نشان دهد 4 ماه و p_{i0} قیمت سهام شرکت t در سال i این شرکت t از سال i تا نشان می‌دهد و q_{i0} حجم معاملات صورت گرفته در سهام شرکت t در سال i است. داده‌های سری‌زمایی حجم معاملات نیز از نشریات ادواری متنی توسط باکی مرکز گرفته شده است. در شکل‌ها (1) و (2) روند سرشاپ زمانی شاخص TEPIX و حجم معاملات بورس اوراق بهادار تهران به نمایش گذاشته شده است.

1. Tehran Exchange Price Index
همچنانکه نمودار روند در شکل (1) نشان می‌دهد، طی دوره زمانی سالهای ۱۳۸۱ تا ۱۳۹۱ شاخصهای تغییراتی در پوستوم را نشان می‌دهد، شکل ۱ نشان می‌دهد که طی دوره زمانی سالهای ۱۳۸۱ تا ۱۳۹۱، بازار بورس اوراق بهادار تهران دو دوره سقف و دو دوره کف اندامه شاخص را تجربه نموده است.

شکل ۲ نمودار روند حجم معاملات بورس اوراق بهادار تهران

شکل ۲ پیانگر روند حجم معاملات در بورس اوراق بهادار تهران است که دارای روندی پرتوسوس و میرا است. از سال ۱۳۸۸ به بعد، ضمن افزایش متوسط سطح معاملات، نوسانات این متغیر افزایش چشمگیری را نسبت به قبل تجربه نموده است.
۶. یافته‌های پژوهش

در این بخش، ابتدا مانی‌های سربهای زمانی شاخص کل بورس تهران و حجم معاملات طی دوره زمانی مورد مطالعه، با استفاده از آزمون‌های ریشه‌ی واحد دیکی فولر تعمیم‌یافته و قیلیبس برون مورد آزمون قرار می‌گیرد. نتایج این آزمون‌ها در جدول (۳) گزارش شده است.

جدول ۳: نتایج آزمون‌های ریشه‌ی واحد

<table>
<thead>
<tr>
<th>متغیر آزمون</th>
<th>TEPIX</th>
<th>TEPIX متغیرهای اول</th>
<th>حجم معاملات</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF(۰/۲/۰۳)</td>
<td>-۰/۱۰۰۰۰۰۰۰۰۰۰</td>
<td>-۰/۱۰۰۰۰۰۰۰۰۰۰۰</td>
<td>-۰/۱۰۰۰۰۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>PP(۰/۲/۰۳)</td>
<td>-۰/۱۰۰۰۰۰۰۰۰۰۰۰</td>
<td>-۰/۱۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>-۰/۱۰۰۰۰۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

منبع: یافته‌های تحقیق

بر پایه نتایج، متغیر شاخص ریشه‌ی واحد ADF در سطح مانی‌های نیست و دارای ریشه‌ی واحد است، با این TEPIX وجود نتایج متغیرهای اول این متغیر مانی است. بنابراین شاخص TEPIX ابزارهای زمانی ADF ابزارهای زمانی است. از طرفی حجم معاملات بر پایه‌ی هر دو آزمون ریشه‌ی واحد و PP آزمون‌های متغیرهایها، لازم است از وظیفه بندی بندی اول ایمن نشان داده و گردیده. برای این منظور از آزمون هم‌جمعی کرانه‌ها (پسران و همکاران ۲۰۱) با قابلیت رایگی بندی آزمون‌های سری زمانی از متغیرهای متغیرهای صفر و یک استفاده خواهیم کرد. نتایج این آزمون در جدول (۴) گزارش شده است.

1. Integrated of order one
2. Integrated of order zero
3. Bound testing co-integration test
4. Pesaran, M.H. and Shin, Y. and Smith, R.J.
به همچنانیکه ملاحظه می‌کنیم، آماره‌های F سه‌گانه آزمون کرک‌ها، در سطح 0.01 درصد معنادار بوده و بنابراین وجود رابطه بندندمته بین شاخص کل و حجم معاملات بورس اوراق بهادار تهران تأیید می‌گردد. بدین ترتیب پس از حصول اطمینان از وجود رابطه بندندمته بین شاخص تکنیکی و حجم معاملات در بورس اوراق بهادار تهران، می‌توان این دو متغیر را در قابلیت یک مدل رگرسیونی تصمیم‌گیری نمود، لذا در ادامه این بخش به بررسی رابطه بین این دو متغیر در قابلیت مدل انتقال رژیم مارکف خواهم پرداخت.

زمانی می‌توان مدل انتقال رژیم مارکف را مورد استفاده قرار داده که وجود رابطه غیرخطی بین متغیرها مورد تأیید قرار گیرد. از این رو در ادامه این بخش قبل از برآورد مدل آزمون کشف و تقارن غیرخطی توسط راستسنجی جهت آزمون وجود رابطه غیرخطی بین پایدار و حجم معاملات انجام می‌گردد. آماره‌ای این آزمون از تشکیل نسبت توالع راستسنجی مقدی و تامپدیست می‌آید و دارای توزیع کاپی دو با تعداد درجات برای با تعداد رژیم‌ها است. بر پایه نتایج این آزمون رابطه معیار غیرخطی در سطح اطمینان 0.99 درصد بین حجم معاملات و شاخص کل بورس تهران وجود دارد. نتایج همچنین نشان می‌دهد که مدل بهینه غیرخطی انتقال رژیم مارکف برای مدل ساده رابطه شاخص کل با حجم معاملات در بورس اوراق بهادار تهران، مدل دیکن دو دیوار تغییر رژیم و با لحاظ وقته خود رگرسیون مربوط به اول رای شاخص کل یعنی (1)-AR(2) است. این مدل بر پایه معادلی آماره آزمون غیرخطی نسبت راستسنجی و معیار آگکیک تعیین شده است. نتایج

جدول 4. نتایج آزمون هم‌جمعی کرک‌ها

<table>
<thead>
<tr>
<th>آماره</th>
<th>حالت پهنام</th>
<th>حالت نیمه‌پهنام</th>
<th>حالت جهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>8.75**</td>
<td>8.31***</td>
<td></td>
</tr>
</tbody>
</table>
برآورد این مدل در جدول (5) گزارش شده است. پارامترهای مدل در هر دو رژیم حدی رکود و رونق درونزا بوده، بر پایه رفتار متغیرهای تحقیق برآورد شده‌اند.

جدول 5: نتایج برآورد مدل انتقال رژیم مارکف

<table>
<thead>
<tr>
<th>متغیر</th>
<th>پارامتر</th>
<th>مقدار</th>
<th>آماره تی</th>
<th>سطح معناداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>عرض از میدا (رکود)</td>
<td>μ₀</td>
<td>0/18</td>
<td>15/2</td>
<td>1000</td>
</tr>
<tr>
<td>عرض از میدا (رونق)</td>
<td>μ₁</td>
<td>0/26</td>
<td>14/6</td>
<td>1000</td>
</tr>
<tr>
<td>(β₀) رکود</td>
<td>β₀</td>
<td>0/3</td>
<td>7/90</td>
<td>1000</td>
</tr>
<tr>
<td>(β₁) رونق</td>
<td>β₁</td>
<td>0/99</td>
<td>7/98</td>
<td>1000</td>
</tr>
<tr>
<td>(φ₀) رکود</td>
<td>φ₀</td>
<td>0/13</td>
<td>2/88</td>
<td>1000</td>
</tr>
<tr>
<td>(φ₁) رونق</td>
<td>φ₁</td>
<td>0/17</td>
<td>2/88</td>
<td>1000</td>
</tr>
<tr>
<td>واریانس رکود</td>
<td>σ₀</td>
<td>0/94</td>
<td>8/44</td>
<td>1000</td>
</tr>
<tr>
<td>واریانس رونق</td>
<td>σ₁</td>
<td>0/2</td>
<td>6/02</td>
<td>1000</td>
</tr>
<tr>
<td>P₀₀</td>
<td>0/33</td>
<td>0/24</td>
<td>3/39</td>
<td>1000</td>
</tr>
<tr>
<td>P₁₁</td>
<td>0/94</td>
<td>3/47</td>
<td>4/38</td>
<td>1000</td>
</tr>
<tr>
<td>Nonlinear LR test</td>
<td>3/0/52</td>
<td>-</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

منبع: یافته‌های پژوهش

نتایج نشان می‌دهد که حجم معاملات در هر دو رژیم رکود و رونق اثر معنادار مثبت بر اندام‌های شاخصی دارد. با این حال این اثر نامتقارن است و در دوره رونق اثر حجم معاملات بر شاخص بزرگتر است. بدین ترتیب بر پایه نتایج می‌توان گفت در دوره‌های رونق حجم معاملات اثر بزرگتری بر رشد بانک‌های شاخص کل داشته است. بنابراین اگرچه با افزایش حجم معاملات در هر کدام از شرایط رکود و رونق بانک‌های مهرانی میزان شاخص رشد OX-Metrics صورت گرفته است.
می‌کند، اما میزان تاثیر گذارای آن در رزمی رونق بیشتر است. از طریق نتایج نشان می‌دهد که نوسانات شاخص کل در دوره‌های رکود تا حدی بیشتر از دوره رونق است. احتمال مناسب‌گرایی شاخص در هر کدام از دو رزمی رکود و رونق تقییاً پراپر است. این نشان می‌دهد که سیگنال‌های رکود و رونق بورس اوراق بهادار تهران ناپایدار و تغییرپذیر است.

در شکل (۳) احتمال قرار گرفتن هر یک از ماه‌های دوره زمانی تحت مطالعه در هر کدام از رزمی‌های جدید رکود و رونق به نمایش گذاشته شده است. خروط ممتد نمودار احتمال قرار گیری در رزمی رکود و خطوط نقطه‌چین احتمال قرار گرفتن در رزمی رونق را به نمایش می‌گذارد.

![شکل ۳: احتمال قرار گرفتن دوره زمانی مورد مطالعه در هر یک از دو رزمی رکود و رونق](image)

از آنجایی که یکی از ویژگی‌های مدل انتقال رزمی مارکف بررسی تأثیر متغیرهای توضیحی بر متغیر وابسته بر اساس احتمالات فازهای رکود و رونق می‌باشد، در شکل شماره (۳) احتمالات حضور شاخص قیمت سهام در فازهای رکود و رونق طی دوره زمانی مورد مطالعه نشان داده شده است. همان‌طور که ملاحظه می‌شود، دوره‌های زمانی ۱۳۸۱ تا
بر پایه نتایج، اجزای اخلاق مدل انتقال رژیم مارکف ناهیم‌سازی سربیلی‌ها بوده و دارای واریانس یگی هستند و به صورت نرمال توزیع شدهاند که هموگنی جزو ویژگی‌های یک مدل خوب اقتصادسنجی محسوب می‌گردد. بدین ترتیب نتایج آزمون‌های آسیب‌شناسی مدل، عملکرد مناسب و قابل قبول مدل انتقال رژیم مارکف را تایید می‌نماید. می‌دانیم یکی دیگر از معادل‌های بررسی میزان عملکرد یک مدل بررسی دقت و قدرت بیشتری است، لذا بمنظور بررسی میزان قدرت پیش‌بینی مدل انتقال رژیم مارکف، در ادامه روند واقعی و روند پرازش شده شاخص کل بورس اوراق بهادار تهران در شکل (۲) مقایسه شدهاند. خود مدل روند واقعی و خط‌چین روند پرازش شده شاخص کل بورس اوراق بهادار تهران را طی دوره مورد مطالعه به نمایش می‌گذارد. همچنین مشاهده می‌گردد، مدل انتقال رژیم مارکف از قدرت پرازش قابل قبولی برخوردار است.

جدول ۲: نتایج آزمون‌های آسیب‌شناسی مدل

<table>
<thead>
<tr>
<th>عناصر آزمون</th>
<th>مقدار معاداری</th>
<th>مقدار آماره آزمون</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون همبستگی سربیلی</td>
<td>۰/۳۲</td>
<td>۰/۳۶</td>
</tr>
<tr>
<td>آزمون ناهیم‌سازی واریانس</td>
<td>۰/۴۰</td>
<td>۰/۴۵</td>
</tr>
<tr>
<td>آزمون نرمال بودن</td>
<td>۰/۵۰</td>
<td>۰/۵۹</td>
</tr>
</tbody>
</table>

متن: باقت‌هاهای یپوهش
روند برآورد شده شاخص TEPIX به خوبی روند واقعی داده‌ها را در دوره‌های رکود و رونق دنبال می‌نماید.

[Line chart showing the trend of TEPIX]

شکل ۴: روند واقعی و برآورد شده شاخص کل بورس اوراق بهادار تهران

به‌منظور مقایسه قدرت برآورد و پیش‌بینی دهنده‌گی مدل انتقال رژیم مارکف، در ادامه به مقایسه دقت پیش‌بینی داخل و خارج از نمونه این مدل با مدل خوشه‌گرگسونی برداری (VAR) می‌پردازیم. برای نخستین مدل از متدولوژی باکس-جکسن استفاده شده است. متریک جملات خوشه‌گرگسونی و میانگین متحرک آن مدل با استفاده از معیار آکاییک مشخص گردیده است. از طرفی متریک بهبود مدل نیز با استفاده از معیار آکاییک تعیین شده است. جدول (۷) میانگین قدر مطلق خطاهای

1. Box-Jenkins Methodology
2. Akaike information criterion

۳ بالا آوردن این مدل‌ها در نرم‌افزار (Eviews) صورت گرفته است.
(MAE) را برای هر مدل در برآوردهای داخل و خارج نمونه‌ی به‌نمایش می‌گذارد. برآوردهای خارج از نمونه برای 8 دوره صورت گرفته و نتایج حاصل از پیش‌بینی با داده‌های واقعی مقایسه گردیده‌اند.

جدول 7 مقایسه خطای پیش‌بینی داخل و خارج نمونه مدل‌های مختلف

<table>
<thead>
<tr>
<th>نوع پیش‌بینی</th>
<th>مدل</th>
<th>ARIMA(5,1,5)</th>
<th>MS(2)-AR(1)</th>
<th>VAR(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>داخل نمونه</td>
<td>MAE</td>
<td>0/13 10/32</td>
<td>0/15 1/46</td>
<td></td>
</tr>
<tr>
<td>خارج نمونه</td>
<td>MAE</td>
<td>0/15 1/46</td>
<td>0/13 10/32</td>
<td></td>
</tr>
</tbody>
</table>

منبع: محاسبات پژوهشگران

بر پایه نتایج، مدل انتقال رزیم مارکف دارای کمترین مقدار میانگین قدر مطلق خطا در برآوردهای پیش‌بینی داخل نمونه‌ای شاخص است. نتایج نشان می‌دهد مدل انتقال رزیم مارکف در برآوردهای داخل نمونه نیز عملکرد بهتر و دقت بالاتری نسبت به مدل خطی برآوردهای خارج از نمونه‌ای VAR و مدل پیش‌بینی تجربی و اریتاست ARIMA اعتبار منجری مدل انتقال رزیم مارکف کفایت و دقت قابل قبولی را در مدل‌سازی و برآوردهای شاخص تائید و لذا نتایج قابل اثبات می‌باشد.
7. نتیجه‌گیری و پیشنهادهای

این مقاله در تلاش برای مدل‌سازی دوره‌های رکود و رونق در بورس اوراق بهادار تهران برای داده‌های سرمایه‌گذاری شده در یک دوره 10 ساله، رابطه پیوسته بین شاخص کل بورس اوراق بهادار تهران و حجم معاملات انجام پذیرفته در این بورس را در قابل مدل انتقال رژیم‌های مدل‌سازی و برسی کرده‌است. نتایج پوره‌شکنی می‌دهد که اول‌اً رابطه غیرخطی معادلات بین شاخص کل و حجم معاملات بورس اوراق بهادار تهران وجود دارد. ثانیاً حجم معاملات اثر معنی‌داری در سیکل‌های مختلف رکود و رونق بر شاخص کل بورس تهران دارد. این نتایج نشان می‌دهد که حجم معاملات از قدرت پیش‌بینی دهنده شاخص کل بورس تهران بخوردار بوده و افزایش حجم معاملات می‌تواند به برون‌رفت بورس تهران از شرایط رکود و ماندگاری شرایط رونق کمک نماید.

بدین ترتیب تلاش برای افزایش شفافیت اطلاعاتی و بروزرسانی اطلاعات مالی مختلف مربوط به شرکت‌های عضو سازمان بورس اوراق بهادار تهران و بنابراین افزایش میزان معادلات و حجم معاملات بورس اوراق بهادار تهران می‌تواند به رونق بورس سهام کمک نماید. برای انجام تحقیقات آینده در این زمینه، پیشنهاد می‌شود که محققان رابطه حجم معاملات و تغییرات قیمت سهام را در قابل مدل‌های واریانس تا حدی می‌تواند برسی کنند. محققان می‌توانند رابطه بین حجم معاملات و قیمت سهام را در سطح گروه‌ها یا شرکت‌های مختلف عضو سازمان بورس اوراق بهادار تهران بررسی نموده و نتایج را با هم‌دیگر مورد مقایسه و تحلیل قرار دهند.
فهرست منابع

