الغوي بوياي لكونتينفوس وتنوري رشيد رزنزا

نويسندگان: هانیس دی کورتس
تنوری سالوادوری
مترجم: محمد اسیمی

مقدمه

ملاحظه‌ای نسبت به نوآوری‌های اساسی مورد این نوشته‌ها مشاهده شد. اما بقیه این میزان‌ها نشان می‌دهد که از تئوری‌های جدید و خلاقانه‌ای که نیاز به تلاش نوآوری‌های جدید، نیاز به اینکه اسلام‌رها شده انتظار داشته که بخش زیادی از عناوان شده (اگر نه تمام آنها) از مدت‌ها پیش شناخته شده، و نیز اینکه پایدار از تئوری‌های جدید، نیاز به داشتن که با مبانی "دوست‌وزنی" مربوط به اقتصاد رشد آن دوره مطابقت داشته‌اند. این میزان‌ها نشان می‌دهد که رشد در مدت به چاپ اینکه از طریق پیروی متی‌سرهای یک دولت متعین شود. "در دورین خود الگو" محاسبه می‌شود (باور و سالوادوری مارتين، صفحه 38). برای مثال، تنوری

* این مقاله در دوازدهمین کنفرانس بین المللی رشد، داده‌های تولید در نورنبروک 18 و 19 اکتبر 1998 می‌باشد.
**. Heinz D. Kurz, Department of Economics, University of Graz, Austria; Nari Salvadori, Department of Economics, University of Pisa, Italy.
*** عصر همایه علمی که داشته‌ایم اقتصاد ناشنوای علائمی مطبایی.
انباشت سرمایه و رشد اقتصادی اقتصاد کلاسیک از آنام اسمیت تا دیکوک و توری تمدن یافته
تلایز مدد کارل مارکس و نیز الگوی رشد جان نوتنگه ۱ همگی با مبایر رشد درونیا مطلب قیادت دارند
(برای نمونه مراجعی شرد به کربیس و سالادوری ۱۹۸۵، ۱۹۸۳ و ۱۹۸۲)
در این مقاله کرده می خواهیم نشان دهیم که الگوی پویای داده‌ستانه و استاتسم، ولی البته الگوی نیز می‌تواند
به عنوان حوضه الگوی نوزده و درونزمان‌سازی شود. در حقیقت مقاله حاضر نشان می‌دهیم که این الگو
مؤید و یوگنی مرتضی و شدید این توری است، به این معنا که نوح رشد آن شونده در درون غور نظام جلوکن
می‌شود (به عنوان نتیجه پس از مراحل مرز اقتصادی یا به عنوان نتایج مورد نظر تابع هدف
نوسان بهره‌وری یا استاتسم‌گزار).

طبقه بندی مقاله حاضر:
در بخش ۱ می‌پردازیم به خلاصه‌ای از ویژگی‌های الگوی پویای داده‌ستانه و استاتسم، ولی البته الگوی نیز می‌توانند
به عنوان حوضه الگوی نوزده و درونزمان‌سازی شود. در حقیقت مقاله حاضر نشان می‌دهیم که این الگو
مؤید و یوگنی مرتضی و شدید این توری است، به این معنا که نوح رشد آن شونده در درون غور نظام جلوکن
می‌شود (به عنوان نتیجه پس از مراحل مرز اقتصادی یا به عنوان نتایج مورد نظر تابع هدف
نوسان بهره‌وری یا استاتسم‌گزار).

۲- خلاصه‌ای از الگوی پویای لتوئنیف

روش وینسییا در زمانی با تغییرات زمانی به‌کار گرفته شده‌است. در این مقاله می‌توان نوجوان می‌گردد و به‌این‌گونه اساسی بینی جغرافیایی کلاسیک را ایجاد می‌کند. در این مقاله، الگوی پویای داده‌ستانه و استاتسم، ولی البته الگوی نیز می‌توانند
به عنوان حوضه الگوی نوزده و درونزمان‌سازی شود. در حقیقت مقاله حاضر نشان می‌دهیم که این الگو
مؤید و یوگنی مرتضی و شدید این توری است، به این معنا که نوح رشد آن شونده در درون غور نظام جلوکن
می‌شود (به عنوان نتیجه پس از مراحل مرز اقتصادی یا به عنوان نتایج مورد نظر تابع هدف
نوسان بهره‌وری یا استاتسم‌گزار).

J. Von. Neumann
ğر از گواشیهای اقتصادی

\[X_t^T(I - A) - (X_{t+1}^T - X_t^T)B = Y_t^T \]

به این مورد نیاز است، الگوی پیش‌بینی ساده به‌صورت زیر است:

تعداد‌آمارهای دیگر

\[\begin{align*}
X_t^T(I - A) - (X_{t+1}^T - X_t^T)B &= Y_t^T \\
\end{align*} \]

که در آن \(A \) ماتریس واحدی است، \(X_t \) ماتریس جهانی با یک عدد اصلی (شامل فرآیند مدل‌سازی) می‌باشد. \(B \) ماتریس مرجع شرایط شرایط ثابت است، \(Y_t \) ماتریس مربعی شرایط شرایط ثابت است. در این روش

یک تأیید برای استفاده که می‌توان شرایط نیاز به یک واحده طرفین تولیدی صادم است ولی تأخیر جیران مذکور

است، می‌توانیم نمایی از یک، \(Y_t \) و \(Y_{t+1} \) م جزء ثابت‌های مخاطب در \(X_t \). ممکن است این افزایش در مقدار

نتیجه اینهای زمان، \(X_t \) ممکن است باشد. به‌طور کلی، همان‌طور که خود تولیدی تاکید می‌گذارد: "بخشی از یک تأیید باید باشد، ولی ادامه که میزبانی اکتشادی برای تغییرات اقتصادی است. با این حال، اجازه نمی‌دهد. به‌طور زمانی که کار تولیدی تاکید می‌گذارد: "بخشی از یک تأیید باید باشد، ولی ادامه که میزبانی اکتشادی برای تغییرات اقتصادی است. با این حال، اجازه نمی‌دهد. به‌طور زمانی که کار تولیدی تاکید می‌گذارد: "بخشی از یک تأیید باید باشد، ولی ادامه که میزبانی اکتشادی برای تغییرات اقتصادی است. با این حال، اجازه نمی‌دهد. به‌طور زمانی که کار تولیدی تاکید می‌گذارد: "بخشی از یک تأیید باید باشد، ولی ادامه که میزبانی اکتشادی برای تغییرات اقتصادی است. با این حال، اجازه

این‌که تغییرات مشترک است، برای این که این الگو در اقتصاد کاربردی مفید باشد، باشد آن را انتخاب

۱- برای نمونه، وجوع شرود به‌طور ارائه‌های خودشان انتشار ذی‌آرایی، جدید با استفاده از کارگاههای تولیدی و

۲- (۱۹۸۳) و کالکان روزر (۱۹۹۴).
دخالت دادن سرماههای ثابت در الگو مشکل تخمین وجود بود، اما به منظور حل مسئله استهلاک زمینه است که یک الگوی تخمین ساخته شود. بدون نیازی به تخمین توزیع نرمالیتی، نیروی کار کاربرد و طول عمر مسئله به فضاهای آن مسئله استهلاکی نمی‌تواند به طور سازگاری حل شود. لازم بود به روش‌های ساعت‌گیری و دراز واقعیت به هیچ وجه کمکی به حل مسئله استهلاک کمک نکند.

فضس مادی این مقاله این است که رابطه‌ای برقرار کنیم بین شکل‌دادنی و یک نوع از الگوهای داده‌ها.

ستاند (که در بخش سوم جزئیات شده) و برخی از الگوهای جدید رشد.

شکل از الگوهای لتونیفیت

$$x_i^T \geq a_i d^T \quad (1)$$

که در آن A بردار کل مسئله مصرفی و a ضریب عدید است. A ماتریس لتونیفیت است، لکن برعکس فرمول

بنیم ممکن، الگوی بای لتونیفیت شام، یک بخش (یک سطح) است که معرف مصرف نیروی کار می‌باشد و در معرض نیروی کار بوده‌ند. ترکیب نیروی کار بوسیله کالاها و نیروی کار است. در برخی

فرومی بندی ممکن الگوی بای لتونیفیت شام، مصرف صاحبان سرمایه است. نیاز به بردار مصرف مرکز به صورت پایه انجام می‌گردد. برخی مصرف کرده‌اند میزان صاحبان سرمایه است. می‌تواند در آمد شبانه به صورت سود به بی‌پره‌های مشتری و یک بخش از آن را در مصرف کالا به نظر می‌رسد. مصرف می‌گردد.

بنیم تغییر می‌گیرد و بردار کالا به بی‌پره‌های مشتری و یک بخش از آن را در مصرف کالا به نظر می‌رسد.

در آن استفاده کرده‌اند. این است که هر اندکی نیروی کار همیشه باشند، با بهره‌های واحد معنی می‌کنند، معادله دستمزد و برخی از الگوهای جدید رشد.

شکل از الگوهای لتونیفیت

$$x_i^T \geq a_i d^T \quad (1)$$

که در آن A بردار کل مسئله مصرفی و a ضریب عدید است. A ماتریس لتونیفیت است، لکن برعکس فرمول

بنیم ممکن، الگوی بای لتونیفیت شام، یک بخش (یک سطح) است که معرف مصرف نیروی کار می‌باشد و در معرض نیروی کار بوده‌ند. ترکیب نیروی کار بوسیله کالاها و نیروی کار است. در برخی

فرومی بندی ممکن الگوی بای لتونیفیت شام، مصرف صاحبان سرمایه است. نیاز به بردار مصرف مرکز به صورت پایه انجام می‌گردد. برخی مصرف کرده‌اند میزان صاحبان سرمایه است. می‌توانند در آمد شبانه به صورت سود به بی‌پره‌های مشتری و یک بخش از آن را در مصرف کالا به نظر می‌رسد. مصرف می‌گردد.

بنیم تغییر می‌گیرد و بردار کالا به بی‌پره‌های مشتری و یک بخش از آن را در مصرف کالا به نظر می‌رسد. مصرف می‌گردد.

در آن استفاده کرده‌اند. این است که هر اندکی نیروی کار همیشه باشند، با بهره‌های واحد معنی می‌کنند، معادله دستمزد و برخی از الگوهای جدید رشد.

شکل از الگوهای لتونیفیت

$$x_i^T \geq a_i d^T \quad (1)$$

که در آن A بردار کل مسئله مصرفی و a ضریب عدید است. A ماتریس لتونیفیت است، لکن برعکس فرمول

بنیم ممکن، الگوی بای لتونیفیت شام، یک بخش (یک سطح) است که معرف مصرف نیروی کار می‌باشد و در معرض نیروی کار بوده‌ند. ترکیب نیروی کار بوسیله کالاها و نیروی کار است. در برخی

فرومی بندی ممکن الگوی بای لتونیفیت شام، مصرف صاحبان سرمایه است. نیاز به بردار مصرف مرکز به صورت پایه انجام می‌گردد. برخی مصرف کرده‌اند میزان صاحبان سرمایه است. می‌توانند در آمد شبانه به صورت سود به بی‌پره‌های مشتری و یک بخش از آن را در مصرف کالا به نظر می‌رسد. مصرف می‌گردد.

بنیم تغییر می‌گیرد و بردار کالا به بی‌پره‌های مشتری و یک بخش از آن را در مصرف کالا به نظر می‌رسد. مصرف می‌گردد.

در آن استفاده کرده‌اند. این است که هر اندکی نیروی کار همیشه باشند، با بهره‌های واحد معنی می‌کنند، معادله دستمزد و برخی از الگوهای جدید رشد.
فصلنامه پژوهش‌های اقتصادی

سباستگزار تابع هدف راه برای هر دوره ثابت نگاه می‌دارد، پس

تابع (1) را با توجه به محدودیت (1) حداکثر کرده که در آن، X برای هر i غیر منفی است، و

\[\sum_{t=0}^{\infty} f(a_t, t) = a_\theta \]

بردار موجودی کالاهایی در دسترس در اینجا زمان مورد نظر می‌باشد.

مثال 1: در مثال اول فرض می‌شود سیاست گذار توجه خود را مانند در روي مصرف در زمان \(\theta \) متمرکز می‌کند. روش است که این سیاستی خواهد بود که می‌تواند مصداق ضرر الماسی باشد که می‌گردد از ما که گذشته دیگر مهم نیست چه بخشی می‌آید. یک هدف این مثال صرفاً برای درک بهتر این مطلوب است.

در این مورد داریم:

\[\sum_{t=0}^{\infty} f(a_t, t) = a_\theta \]

و لذا مساله‌ای که پایه حل شده عبارت است از:

Max \(a_\theta \)

S.to \[X^T_i \geq X^T_{i+1}, A + a_i d^T \]

\[X_i \geq 0, \quad a_i \geq 0, \quad X \leq \bar{X} \]

به سادگی می‌توان درباره فرمول \(a\theta \) به عنوان جواب مساله زیر می‌تواند تعبیه شود.

Max \(a_\theta \)

S.to \[a_d d^T A \leq \bar{X} \]

\[a_\theta \geq 0 \]

که گفته به خردخواننده است و مسئله است به لاثی پانزدهم، می‌گویند که وانتهای پانزدهم در گنجی شکست خوردن برای رفع ناخنی و آلودن اجرا می‌گردد از نظر دیکان او برای دانشمند این اصطلاح را نکارداری کرد.
بنابراین:

\[
a_0 = \left[\max_i \frac{d_i^T A^\theta e_i}{X^T e_i} \right]^{-1}
\]

پس جواب مسأله (2) به صورت زیر کامل می‌شود.

\[
X_t = \psi a_\theta + (1-\psi) a_t \quad \text{یک‌تایی}
\]

\[
a_t = \cdot \quad \text{تغییر}
\]

\[
X_t = \cdot \quad \text{تغییر}
\]

مثال 2: مثال دوم همانند مثال توصیف شده اول می‌باشد، لذا اندکی غیر عادی است. اکثریت هم
سیاست‌های دوزی مصرف در در زمان مختلف متغیر است که در این ضرایب‌های متغیر می‌باشد
پس این مسأله قابل حل می‌شود:

\[
\sum_{i=0}^{\infty} f(a_t,t) = \psi a_\theta + (1-\psi) a_t
\]

بنابراین مسأله به صورت زیر در می‌آید:

\[
\text{Max} \quad \psi a_\theta + (1-\psi) a_t
\]

\[
\text{S.to} \quad X_t \geq X_t^{\text{ایج}} + a_t d_t^T
\]

\[
X_t \geq 0, \quad a_t \geq 0, X_0 \leq \bar{X}
\]

کاملاً در همان است که را به عنوان جواب مسأله تعیین کرد.

\[
\text{Max} \quad \psi a_\theta + (1-\psi) a_t
\]

\[
\text{S.to} \quad a_\theta d^T A^\theta + a_t d^T A^t \leq \bar{X}
\]

\[
a_\theta \geq 0, \quad a_t \geq 0
\]

بنابراین جواب مسأله (3) به صورت زیر کامل می‌شود:

\[
a_t = \cdot \quad \text{یک‌تایی}
\]

\[
\theta \neq 1 \neq t
\]
\\[X_i = a_d d^T A^{i-1} + a_d d^T A^{i-1} \] \[\quad \theta < i \leq \tau \]

\[X_i = \] \[\quad t > \tau \]

مثال 3: اکنون به منظور تسهیل مقایسه با نظریه نیوتن، مورد زیر را در نظر می‌گیریم:

\[\sum_{t=0}^{\infty} f(a, t_1) = \sum_{t=0}^{\infty} (1 + p)^{-t} (1 - \sigma)^{\left(1 + \sigma - 1\right)} \]

که در آن \(p \) می‌تواند هر رهگیر زمانی تفسیر شود، به گونه‌ای که مصرف برای زمان‌های آینده تنزلی شده‌باشد. بنابراین، \(0 < \sigma \leq 1 \)

می‌تواند به عنوان کشش جانشینی بین مصرف حال و آینده تفسیر شود. لذا مسئله به صورت زیر خلاصه می‌شود:

\[
\begin{align*}
\text{Max} & \quad \sum_{t=0}^{\infty} (1 + p)^{-t} (1 - \sigma)^{\left(1 + \sigma - 1\right)} (a_1 - 1) \\
\text{S.to} & \quad X_i \geq X_{i+1}, A + a_1 d^T \\
& \quad X_i \geq 0, a_1 \geq 0, X_i \leq \overline{X}
\end{align*}
\]

به واجب ان‌می‌توان دریافت که فعلاً می‌تواند به عنوان جواب مسئله زیر تعبیه شود:

\[
\begin{align*}
\text{Max} & \quad \sum_{t=0}^{\infty} (1 + p)^{-t} (1 - \sigma)^{\left(1 + \sigma - 1\right)} (a_1 - 1) \\
\text{S.to} & \quad \sum_{t=0}^{\infty} a_i d^T A \leq \overline{X}^T, a_1 \geq 0
\end{align*}
\]

و اکنون کاملاً واضح است که معادله لانگرندن - کان - تاکوی به صورت زیر در می‌آید:

\[a_i = \left[(1 - p)^t d^T A Z \right]^{-\frac{1}{\sigma}} \]

\[\sum_{i=0}^{\infty} a_i d^T A \leq \overline{X}^T \]

\[Z \geq 0 \]

\[\sum_{i=0}^{\infty} a_i d^T A Z = \overline{X}^T Z \]
که در آن Z پرداز ضریب لگرانژی است. هنگامی که این مساله حل شود، جواب (4) به صورت زیر تکمیل خواهد شد:

$$X_t^T = \sum_{i=1}^{\infty} a_i d_i^T A_i^{-1}$$

حل مساله (5) ساده نیست، لیکن اگر به دنبال راه حل مدل پایدار رشد افتتاحیه باشیم در این صورت نسبتاً ساده می‌شود. در این حالت \tilde{X} نمی‌تواند اختیاری باشد، اما پایدار به روش‌های انتخاب شود که داشته باشیم.

$$a_i = a_i (1+g)^i$$

که در آن g مقدار ثابت است که با پایداری شرود، از آنجا که معادلات (58) و (59) مصداق دارد.

وچون با نه فرض ماتریس A دارای n ریشه خاص است، پس:

$$A^t = TLT^{-1}$$

که در آن T ماتریس صحیح پرداز مشخصه ماتریس A, L ماتریس قطری ریشه‌های خاص ماتریس A. در نقطه اصلی می‌باشد ($AT=TL$).

$$Z = \beta q$$

که در آن q عبارت است از پرداز خاص و صحیح پرون‌های نیس ۱ ماتریس A که به طریقه نرمال شده است (اما شکل نرمال کردن را به کار می‌بریم)، بنابراین داریم:

$$a_t = \left[(1+p)^T \beta d^T q \right]^{-1} = \beta^{-1} \left[(1+p) \lambda \right]^{-1}$$

$$\sum_{i=1}^{\infty} \beta^{-1} \left[(1+p) \lambda \right]^{-1} d_i^T A_i^{-1} = \beta^{-1} d^T \left(I - \left[(1+p) \lambda \right]^{-1} A \right)^{-1} = \tilde{X}_T^T$$

1- Perron-Forbenius
\[X_t^T = \beta^{-\frac{1}{2}} \left(1 + p \lambda \right)^{-\frac{1}{2}} \left(1 - \left(1 + p \lambda \right)^{-1} A \right) \left(1 + p \lambda \right)^{-\frac{1}{2}} X_t \]

توجه شود که ماتریس \(A \) فقط با این شرط قابل معکوس شدن با یک معکوس \((1 + p)\lambda < \lambda^{-1}\) مشبیت می‌باشد که در اینجا داشته باشیم:

بنابراین نظر می‌کنیم نامعادن (7) از این مقدار دارد. نامعادن (7) به این معنی است که کاما

واقعی \(\frac{1}{2} \left(1 + p \lambda \right) \) کمیک از علامت رشد حداکثر، \(\lambda^{-1} \), می‌باشد. این امر مستلزم این است که برای یک معکوس معنی \(\lambda \) نیاز به حذف زمان \(p \) از همان کاسی بالایی زیرا \(A \) باشد، که این نظر در اینجا منظور خواهد شد.

3- مقایسه با موضوع رشد توین.

چند سال اخیر شاهد انتشار حجم متمری از تغییرات رشد "توین" گردیده است. البته هم می‌تواند، این تغییرات در پاتولوژی تغییرات این نوع تغییرات این نوع تغییرات در پاتولوژی سرپا وغیره، در حقیقت این تغییرات بر حسب اندازه این نوع تغییرات در پاتولوژی سرپا وغیره، در حقیقت این تغییرات بر حسب اندازه (1998). به منظور داشتن رشد داده‌هایی بهتر، رازهی رشد نیروی کار (با این نظر که نیروی کار مردم در انتقال کامل است) محصول به امکان سرمایه بدین باید تشکیل داده شود. با این نظر که نیروی کار، همگین که (1998). به منظور داشتن رشد داده‌هایی بهتر، رازهی رشد نیروی کار (با این نظر که نیروی کار مردم در انتقال کامل است) محصول به امکان سرمایه بدین باید تشکیل داده شود. با این نظر که نیروی کار، همگین که (1998). به منظور داشتن رشد داده‌هایی بهتر، رازهی رشد نیروی کار (با این نظر که نیروی کار مردم در انتقال کامل است) محصول به امکان سرمایه بدین باید تشکیل داده شود. با این نظر که نیروی کار، همگین که (1998). به منظور داشتن رشد داده‌هایی بهتر، رازهی رشد نیروی کار (با این نظر که نیروی کار مردم در انتقال کامل است) محصول به امکان سرمایه بدین باید تشکیل داده شود. با این نظر که نیروی کار، همگین که (1998). به منظور داشتن رشد داده‌هایی بهتر، رازهی رشد نیروی کار (با این نظر که نیروی کار مردم در انتقال کامل است) محصول به امکان سرمایه بدین باید تشکیل داده شود. با این نظر که نیروی کار، همگین که
抵الی (رویا، 1991، اپوپ و ریالو، 1995). دو مدل مختلف در دو مدلگری جوزئی و مانیوری (آمده است که در آن نوعی

دنیا به نظر می‌رسد بازه‌سازی روش‌های که به این‌ها کافی از زیر نمودن شده است در نظر گرفته می‌شود (جوزئی و

مانیوری، 1995). سنگینی حالاتی که کمک به شکستگی ممکن است با گسترش این و اثرات عاری از می‌باشد.

به آن (به رهبری مدیل لولیانی، 1985) با به وسیلهٔ انرژی‌های که تحقیق می‌شود مربوط

به شکل می‌دهد انتخاب شده است (به طور یافته به روش 1948 مراهی متغیر شده).

از آنجا که اپش شرط که پیش‌بینی پیش‌بینی نخوری ضعیف می‌باشد می‌باشد که در طول زمان تغییر نمی‌کند.

فمنهای دو طرفی این در رشده "نیو" آگویی خطر که می‌باشد به همین دلیل می‌باشد که این می‌باشد به

مورد نمود.

یکی از شرایطی که انرژی خطر رشد این است که تام عوامل تویلیت غیر قابل اندازه‌گیری را کاست

تهاره‌گذاری در ساده‌ترین نوع اگویی خطری که فرض می‌شود رابطه ضعیف بین دو مدل کل، و عضوی که

تشانعند تمام عوامل سرمایه‌گذاری ذخیره که در دو در برگیرند نویز واحدها از کالا مهم برقرار

است:

\[Y = AK \]

\[\hat{\delta} = K = A \]

که در آن برخی از کلاسیک می‌باشد لیزیز باید تولید یک واحد از کالا است. فرض می‌باشد که مجموعه

هم سرمایه‌های فیزیکی و هم سرمایه‌های انسانی است از این‌گونه فرض می‌شود زمان بین رابطه به

شکل سطحی ناب از کالا ممکن محسوس کارایی خاص، برای آن به وسیله

واپ‌بر یک تغییر می‌باشد.

\[X = Y + \]
شده در الگری فوق توجه مان را صرفاً مطابق کنیم به سری‌سازی جایی که در آن صورت، موضوع به این فرض مربوط منجر شد که در الگری \(\text{ AK } \) با یک معادل واحد در نظر گرفته شود اما اگر چه با فرض ناپیوسته

بودن زمان، مصداق 1 = \(\delta \) به معنای مصرف شدن سرمایه در واحد زمان است، در حالتی که زمان پیوسته است، رابطه 1 = \(\delta \) به این معنی است که سرمایه هزمان با خارج شدن کالاها از قاردینه تولید، به طور کامل مصرف می‌شود. حال اگر فرض کنیم که هیچ گونه وقوع زمانی بین داده و ساختارها و جوی دنیا نباشد، دیگر سرمایه‌ای وجود نخواهد داشت. یعنی با زمان پیوسته و با فرض 1 = \(\delta \) به نمی‌توان سرمایه ثابت بود که تمام سرمایه از مدل مصرف شود. به علاوه، برای ایجاد این امکان که کالاها سرمایه‌ای در یک مدت زمان مصرف شود، تا ناپیوسته را به یک سری‌سازی نامیده‌ایم که از این عوامل تأثیرگذار کالاها و همچنین سرمایه‌ای در طول عمر (پیش تسه) نسبت به آن باشد. بنابراین، با زمان پیوسته به یک سری‌سازی سرمایه‌ای طولی مستحکم می‌شود که باعث از آن به طور کامل مصرف شود، به نمایه ساده‌ترین حالت است که در مورد سرمایه به فرم‌های می‌شود، بلکه ناپیوسته می‌شود. بنابراین، نیاز به این است که موجب پرهیز از ضرورت تعادل بیش‌پراک به این سرمایه‌ای می‌شود (البته این امر به این معناست که روش ما کاملاً رضایت‌بخش است).

حال، همان طوری که معادله (9) نشان می‌دهد، باید بپنداشته که در الگری

سود فقط با فرآوری تعیین می‌شود. بنابراین مکانیزم پس از انتزاع سرمایه‌گذاری به طور مشترک همراه با فرض که نخ رشد بکار می‌رود، یعنی تعادل و وضعیت ایجاد رابطه‌ای بین نخ و نهایاً سود

لحاظ‌های \(\hat{\text{P}} \) تعیین می‌کند (ویرال 1991، صفحه 554) که رابطه دیرا از آن برخاست می‌آید: \(\hat{\text{P}} \)

\[
\hat{\text{P}} = \frac{A - \delta - \hat{\text{p}}}{\sigma} = \frac{\text{p} - \hat{\text{p}}}{\sigma}
\]

که در آن \(\hat{\text{P}} \) نخ رشد زمانی لحاظ‌های است. بنابراین، با مصرف می‌شود (که با توجه به واحد زمان تعیین می‌شود) پیوسته است.

\[
\text{معادله} (10) \text{ و ریسک بنیاد می‌آید که پس انتها بر اساس این فرض تعیین شوند که یک بسگاه}
\]

- در حالتی که در آن می‌توان به پس انتزاع از پیوستن تعیین باشد، رادی (همان معنی صفحه 554) رابطه‌ای به صورت زیر استفاده می‌کند:

\[
g = s (\text{A-S}) = s^2
\]

این روش استفاده می‌کند. در نظر گرفتن روش رتبه‌گذاری در اکثریت این بیانیه‌ها که در طول کالبدوی قرار دارند، سیستمی مطرح شده است.
نمودایی‌ما (با عمر جوانان) وجود دارد که تمامی به حداکثر سازی نتایج مطلوبیت بین زمانی، را در طول یک اتفاق نامحدود در بردارد انتخاب روشی که مصرف را حداکثر می‌کند شامل حداکثر سازی مجموع مطلوبیت‌های احظای است.

\[\int e^{-F'(U(c(t))) dt} \]

در مورد وضعیت مورد بحث ما این انتگرال با توجه به محدودیت حالت شماره (8) حداکثر می‌شود که در آن

\[Y = C(t) + K \]

\[U(c(t)) = C(t)^{\frac{1}{1-\sigma}} \]

اکنون می‌توان این اگر را با الگوریتم یونتیف مطرح شده در بالا مقایسه کرد. اگر برگه باشد، عنوان عامل ترکیبی که به طور درون‌زا تولید شده و هزینه‌های تولید آن براساس مقدار معين در مرز کالا به کار می‌دهد و در همان تاریخ باشد، در این فرضیه باید در سیستم حاکم باشد، در این صورت نرخ باید محاسبه شود. پویای یونتیف در بالا به وسیله معادله نیز تعبیه می‌شود، یعنی:

\[(1+r)AP = P \]

\[AP = \lambda P \]

که در آن

\[\lambda = \frac{1}{1+r} \]

ضریب ضعیفی یک عبارت از روش مشخصه پرون-فنونیت ماتریس \(\lambda \) می‌باشد. عامل سرد \(1-\lambda \) می‌باشد، بنابراین با عامل حداکثر وشد، سازگار با شرایط معین تولید (و با مصرف تولید کارگران) برای است. از معادله (7) داریم:

\[1 + g = \left(\frac{1 + r}{1 + p} \right) ^\hat{\alpha} \]

\[\hat{p} = Log (1 + r), \hat{P} = Log (1 + p) \]

با در نظر گرفتن روابط (8) داریم:

\[1 + g = e ^{\frac{\hat{p}}{\sigma}} \]
در این مقاله نوع خاصی از توریتیم"، گروه پرویز، نویسندگان اولین مدل درون سیستم، این است که برخی از شرایط درون‌زا بودن شرکت، در این الگو نشان داده شده که الگو پرای لودنتیفیکه سازگار است با شرایط درون‌زا بودن شرکت. در رشد وضعیت با پایدار نشانه‌های دارای نگهداری نازدیکی دارد. از نظر طبیعی توریتیم"، نظر الگوی AK در درد این الگوها درون‌زا بودن نهایت شرکت به دلیل این واقعیت است که عوامل تولیدی در عرضه معینی (پا عرضه برونزا) به طوری تا مانع‌سازی اقتصاد شد، منابع طبیعی، واکرد و الگو، کره‌ای و فن اوری را مطرح کرده‌ایم که جایگزینی باشد برای آن چربی که اقتصادی است کلاسیک (وسولو) "کار"، یک تأمین در مطالعه مربوط به سهم "نوزن" به آن عامل صرفه‌نامهای جدید داده شده مثل "سرماهای انسانی" یا "اطلاعات" یا "دانتش"، اگر چنین فن اوری وجود داشته باشد و اگر این فن اوری معنی با یپگی‌های معنی‌دار بعضی به فرآیندهای تولیدی باشد، حاصل رفتار تولید کننده در حداقل کردن هزینه است و نه سود معین و ثابت، رفتار پس اندیش نهایت رشد را تعیین می‌کند.
