تخمین بیزین تابع قیمت هداییک آپارتمان‌های مسکونی در منطقه شمال شهر تهران

کیوان شهباز لواسانی

ویدا ورهرامی

تاریخ پذیرش: ۱۳۹۲/۲/۲۵

پژوهشگر

چکیده:
در این مطالعه به بررسی برخی عوامل مؤثر بر قیمت مسکن در منطقه یک شهر تهران با استفاده از روش‌های اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان می‌پردازیم. در اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان، با بررسی نمادهای صفر و درجه حرارت شبکه مسئله‌های مربوطات در مدل ورود به قیمت و شرایط بازار را با توجه به فاصله جغرافیایی آپارتمان و منطقه ساخته و در مدل‌های تابع قیمت هداییک آپارتمان استفاده می‌شود.

مقدمه:
در این مطالعه به بررسی برخی عوامل مؤثر بر قیمت مسکن در منطقه یک شهر تهران با استفاده از روش‌های اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان می‌پردازیم. در اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان، با بررسی نمادهای صفر و درجه حرارت شبکه مسئله‌های مربوطات در مدل ورود به قیمت و شرایط بازار را با توجه به فاصله جغرافیایی آپارتمان و منطقه ساخته و در مدل‌های تابع قیمت هداییک آپارتمان استفاده می‌شود.

کیوان شهباز لواسانی

ویدا ورهرامی

تاریخ پذیرش: ۱۳۹۲/۲/۲۵

پژوهشگر

چکیده:
در این مطالعه به بررسی برخی عوامل مؤثر بر قیمت مسکن در منطقه یک شهر تهران با استفاده از روش‌های اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان می‌پردازیم. در اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان، با بررسی نمادهای صفر و درجه حرارت شبکه مسئله‌های مربوطات در مدل ورود به قیمت و شرایط بازار را با توجه به فاصله جغرافیایی آپارتمان و منطقه ساخته و در مدل‌های تابع قیمت هداییک آپارتمان استفاده می‌شود.

کیوان شهباز لواسانی

ویدا ورهرامی

تاریخ پذیرش: ۱۳۹۲/۲/۲۵

پژوهشگر

چکیده:
در این مطالعه به بررسی برخی عوامل مؤثر بر قیمت مسکن در منطقه یک شهر تهران با استفاده از روش‌های اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان می‌پردازیم. در اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان، با بررسی نمادهای صفر و درجه حرارت شبکه مسئله‌های مربوطات در مدل ورود به قیمت و شرایط بازار را با توجه به فاصله جغرافیایی آپارتمان و منطقه ساخته و در مدل‌های تابع قیمت هداییک آپارتمان استفاده می‌شود.

کیوان شهباز لواسانی

ویدا ورهرامی

تاریخ پذیرش: ۱۳۹۲/۲/۲۵

پژوهشگر

چکیده:
در این مطالعه به بررسی برخی عوامل مؤثر بر قیمت مسکن در منطقه یک شهر تهران با استفاده از روش‌های اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان می‌پردازیم. در اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان، با بررسی نمادهای صفر و درجه حرارت شبکه مسئله‌های مربوطات در مدل ورود به قیمت و شرایط بازار را با توجه به فاصله جغرافیایی آپارتمان و منطقه ساخته و در مدل‌های تابع قیمت هداییک آپارتمان استفاده می‌شود.

کیوان شهباز لواسانی

ویدا ورهرامی

تاریخ پذیرش: ۱۳۹۲/۲/۲۵

پژوهشگر

چکیده:
در این مطالعه به بررسی برخی عوامل مؤثر بر قیمت مسکن در منطقه یک شهر تهران با استفاده از روش‌های اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان می‌پردازیم. در اقتصاد منشیه به ویژه مدل تابع قیمت هداییک آپارتمان، با بررسی نمادهای صفر و درجه حرارت شبکه مسئله‌های مربوطات در مدل ورود به قیمت و شرایط بازار را با توجه به فاصله جغرافیایی آپارتمان و منطقه ساخته و در مدل‌های تابع قیمت هداییک آپارتمان استفاده می‌شود.

کیوان شهباز لواسانی

ویدا ورهرامی

تاریخ پذیرش: ۱۳۹۲/۲/۲۵

پژوهشگر
تحلیل، بازاریابی و تبلیغات آپارتمان‌های مسکونی در منطقه شمال شهر تهران

متر مربع میانگین لذا به سهولت می‌توان بیان داشت که هر سال انرژی در هزینه یک آپارتمان مسکونی در منطقه یک شهر تهران به طور متوسط باعث کاهش حدودی ایجاد و سی‌هزار نورانی در قیمت هر متر مربع باعث آپارتمان مسکونی می‌شود. همچنین نتایج نخستین مطالعه‌ها نشان داده که این نوع استخراج سود و سالان ورزشی در مجموع آپارتمان باعث افزایش قیمت واحد منطقه نیست که این‌طور به‌طور ۴۵۰ میلیون نورانی می‌شود.

واژه‌های کلیدی: قیمت مسکن، اقتصاد منجری‌بازی، پیزیون هدایتک

طبقه‌بندی: JEL Q43

۱. مقدمه

به نظر می‌رسد در شهرهای مثل تهران با ناهنجاری‌های بسیار زیاد در مناطق مختلف تطبیق کلی در یک کارگیری چون هدایتی قیمتی برای کل مناطق تهران (یا بر خیز از شهرهای دیگر کشور) مشکلات اساسی داشته باشد. زیرا با علت وجود ناهنجاری‌های فراوان در امکانات مختلف شهر تهران و وضعیت در آماده یکسانی آن مناطق مشاهده می‌شود که بخش امکانات مثل استخر سو و سان و ورزشی در مناطق مختلف مثل منطقه یک شهر تهران، واقعاً دارای اثرات تبعیض کننده ای در قیمت واحد مسکونی آن منطقه باشد. وی در مناطق جنوبی شهر تهران، این امکانات تاثیری در قیمت واحد مسکونی نداشتند و افراد متفاوت این امکانات نبودند از سویی در مناطق شمالی شهر تهران مثل منطقه یک، واحدهای مسکونی با اندازه کوچک تلفیقی زیادی ندارد وی در عوض واحدهای بزرگ دارای تلفیقی بیشتری هستند. در مورد داشتن یک پارکینگ نیز مسئله بی‌هیمن حصور است بطوری که متفاوتی واحدهای مسکونی در منطقه یک شهر تهران برخلاف مناطق جنوبی شهر، خواهان تعادل بیشتری پارکینگ بسند. بنابراین با توجه به موارد مذکور به‌کار گیری روش‌های معقول و منطقه‌ای مثل روش هدایتی برای کل مجموعه شهر تهران بدون توجه به
ناهمگنی‌های زیاد موجود در مناطق مختلف این شهر، نادرست است. حتی به نظر می‌رسد که مشکل با کارگیری روش‌های شناسایی با ملاحظه و قضاوت فضایی و همبستگی‌های فضایی در مناطق مختلف به مکان است و وجود ناشی باشد. بعضی از همبستگی‌های فضایی در مناطق مختلف مسکونی است و با سایر مناطق همبستگی فضایی نداشته باشند. از طرفی، از آنجا که واحد مسکونی یا آپارتمان‌های مسکونی کالاهایی همگن نیستند و به دلیل تفاوت در ویژگی‌های نظر اندلوز با مساوات زیر نتایج هر واحد، عمر یا قدت بنای ساختمان، داشتن اهمکاتی مثل استخر، سالن ورزشی و لاپی‌ها سالن اجتماعات برگ و تعداد پارکینگ یکدیگری متفاوت و متفاوت می‌گردد.

رکن نویس تصویر معمول برای مسکن، انتزاعی به نظر می‌رسد و به همین دلیل در این مطالعه برای تخمین تابع تصویر از روش همانهکاری از نوع بزرگی همانهکاری استفاده می‌شود ولی نیزت یک روش نکرداری کلاسیک است که برای ارزش‌شناسی کاملاً درک می‌شود و در ادامه یک بیشتر سنسی‌برای واریانس خطا معرفی می‌گردد.

در این مقاله داده‌های مورد نیاز به صورت مقعی است که از 156 واحد آپارتمانی مسکونی فروخته شده در منطقه یک شهر تهران در مناطق مختلف، فرنیک، کامرانیه، آجودانیه، ناوران، منظره، زعفرانیه، باغ فردوس، دربند، الیه، ولنجک، محمودیه، فرخزدی و یکی از قسمت‌های خیابان پاسداران که در منطقه یک شهر تهران واقع شده است از طریق اطلاعات جمع آوری شده از صنف مشاورین املاک واقع در منطقه یک شهر

1. ممکن است در برخی مطالعات خارجی به علت ایفای کلیه مناطق یک شرکت از همگی قابل توجه نسیب به یکدیگر و در برند مورد این طرح همانهکاری برای یک آن شهر استفاده شده باشد ولی در شهر تهران استفاده از این روش با مشکلاتی مواجه است.
تهران استفاده می‌گردد که به کمک این اطلاعات، ابتدا تابع قیمت بیزان هدانیک آپارتمان‌های مسکونی در منطقه مذکور تخمین زده شده و سپس ضرایب توابع تقاضای مشخصه‌های اصلی و یک آپارتمانی مسکونی به‌وسیله می‌گردد. روش تخمین یکی گراف به‌شکلی است که با استفاده از آن ضرایب تابع تقاضا را برای هریک از ویژگی‌های مذکور تخمین خواهیم زد.

علت انتخاب منطقه بک شهر تهران از این جهت است که در این منطقه، بر خلاف بسیاری از مناطق شهر تهران ناهمگنی‌های کمتری وجود دارد. در صورتی که در سایر مناطق شهر تهران در مساحت بک منطقه نوعی ناهمگنی در وضعیت قبز متر مربع آپارتمان مسکونی و محيط و همسایگی بروخی محدود ها و ناهمگنی در آبادی در بین افراد ساکن در منطقه وجود دارد.

بدین ترتیب هدف از نگارش این مقاله تخمین تابع قیمت بیزان هدانیک آپارتمان‌های مسکونی در منطقه بک شهر تهران و برآورد ضرایب توابع تقاضای مشخصه‌های اصلی و یک آپارتمانی مسکونی این منطقه است. نواوری این مطالعه نسبت به سایر مطالعات، این است که در این مطالعه برای تخمین تابع تقاضا از روش هدانیک از نوع بیزان با بیژن هدانیک استفاده می‌شود و نخواه استفاده از یک تحلیل بیژن یکی‌لبه که مشتمل بر شرایط پیشین، شرایط پسین، مقایسه مدل و پیش بینی می‌باشد، برای یک رگرسیون غیرخطی با چهار متغیر توضیحی مطرح می‌گردد.

در ادامه در بخش دوم به بیان پیشین تحقیق، در بخش سوم به بررسی مباحث نظری مربوط به تابع قیمت هدانیک با تابع قیمت رفاهی مسکن در بخش جهانی به معرفی مدل بیژن، در بخش پنجم به بررسی داده‌ها و تخمین مدل و در بخش ششم به بیان جمع‌بندی می‌پردازیم.

۲. پیشینه تحقیق

در این قسمت به بیان مطالعات انجام شده در راستای موضوع مقاله می‌پردازیم. برگ ۱(۲۰۰۲) در مطالعه خود که در کشور سوئد انجام داده، به بررسی و آزمون تاثیر گذاری

تغییرات قیمت در استکهلم بر دو کلان شهر دیگر یعنی مالمو و غوتینبرگ و جهان ناحیه اطراف پرداخت. نتایج بررسی ویژه نشان داد که تغییرات قیمت مسکن در استکهلم با یک وقته علت گذشته تغییرات قیمت در مالمو، غوتینبرگ و جهان ناحیه محلی نزدیک درگیر بود و این رابطه عکس از دیگر مناطق به استکهلم وجود نداشتند. چندین‌گاهی، یکی یا یکدیگر (2003) با استفاده از یک مدل قیمت هدایانک تابع تفاوت مسکن در شهر استکهلم را تخمین زدند و تأثیر ویژگی‌های محلی و منطقه‌ای، ساختار و عوامل خارجی را بر تابع تفاوت مسکن شهر استکهلم بررسی کردند. آنها نشان دادند که تعداد اتفاق ویژگی‌های فیزیکی و حیاتی مسکن، داشتن سند ملی و عنوان قانونی تأثیر مثبت قابل توجه و معناداری بر قیمت مسکن در شهر استکهلم داشته است. هایزون و دِیگران (2003) تابع قیمت هدایانک را به صورت تجربی برجای یافت و وابسته به شهرهای کشور چین بررسی کردند و نشان دادند که اهمیت دنباله‌های سطح زیست‌ناهیده، فاصله‌های داخلی ساختار شهری، شرایط نواحی، وجود پارک‌ها، اتفاق زیرش(map)، سطح دکوراسیون، محیط زیست، انواع معامله فیزیکی و نزدیکی به داشتگاه، تأثیر مهم و معناداری بر قیمت مسکن در شهر هانزا درشت داشت. چیکا و همکاران (2013) در مطالعه‌ای با استفاده از یک تابع قیمت هدایانک نشان دادند که قیمت مسکن در پایتخت ملی و استه یکی از مهم‌ترین مسکن در همسایگی این است. لذا وابستگی مکانی یکی از علل اصلی هیئله‌های مالی مبتنی بر این مطالعه، از یک تابع قیمت هدایانک استفاده شد و دو مدل اساسی معرفی گردید. اولین مدل‌ها، قیمت‌های مسکن‌ها با استفاده از یک نمونه جPIXی توصیف می‌داد و دومی وضعیت منطقه‌ای و تأثیر مناطق با قیمت مسکن را در تحلیل می‌کرد. در این مطالعه، در نهایت، قیمت‌های مسکن با استفاده از مدل دوم بهبود یافت.

در ایران نیز مطالعاتی در این راستا لجستیک شده است که در ادامه به بررسی آنها می‌پردازیم.

خوش اخلاق و همکاران (1388) در مطالعه ای تابع تقاضای مسکن شهری مربوط به خمینی شهر را با استفاده از مدل قیمت هدایتیک با 190 مشاهده و با روش حداقل مربعات معمولی برآورد کرده‌اند. نتایج مطالعه آنها نشان داد که وزیگی‌های فیزیکی، محیطی و همسایگی واحد مسکن بر قیمت مسکن در خمینی شهر بیشترین تأثیر را داشت.

اکبری و همکاران (1387) در مطالعه ای عوامل موثر بر قیمت مسکن در شهر مشهد را با توجه به رهیافت اقتصاد سنجی فضایی بررسی کرده و وزیگی‌های فیزیکی، محیطی و دسترسی و فضایی را برای مسکن تعیین کرده‌اند. در مورد این ضوابط ویلایی بیشترین ضرایب تغییر هدایتیک مربوط به متغیرهای مساحت زمین و وضعیت ناحیه محله بود. در مورد واحد‌های آپارتمانی بیشترین ضرایب تغییر هدایتیک مربوط به متغیرهای قیمت هرمترمعی واحد زمین و قبود ساختمان بود. نتایج بررسی آنها نشان داد که وجود یا عدم وجود همبستگی فضایی در مدل قیمت هدایتیک با توجه به نوع واحده مسکن متفاوت است.

صادفی و همکاران (1387) در مطالعه ای آثار آلودگی هوا بر ارزش مسکن را بر شهر تبریز با استفاده از تابع قیمت هدایتیک بررسی کرده‌اند. آنها نشان داده‌اند که ساخت و ساز واحده مسکنی، درآمد مستاجر و تحصیلات سه متغیر مهم تاثیرگذار بر قیمت هزینه واحده مسکنی بعد از آلودگی هوا است. ابیوندی و همکاران (1387) در مقاله ای با استفاده از روش هدایتیک در پی شناخت میزان ارزش گذاری مصرف کننده برای هر یک از وزیگی‌های مسکنی برآمده‌اند. آنها از یک مدل لگاریتمی تابع اجاره‌ها استفاده کرده و با استفاده از داده‌های مقاطع سال 1383 در شهرهای تبریز و اردبیل به بررسی پرداختند و نشان دادند که عوامل فیزیکی، محیطی و دسترسی و فضایی بر اجاره بهای مسکن در شهرهای تبریز و اردبیل تأثیر دارد و آثار این عوامل بر اجاره واحده ویلایی و آپارتمانی متفاوت است.

محمدازاده و همکاران (1391) در مطالعه ای به شناسایی عوامل موثر بر قیمت مسکن در شهر تبریز با استفاده از روش‌های اقتصادسنجی فضایی پرداختند. آنها در مطالعه خود چهار عامل فیزیکی، محیطی، دسترسی و فضایی را در نظر گرفتند و اطلاعات مربوط به 757
خانوار نمونه ساکن در شهر تبریز در سال ۱۳۸۹ جمع آوری کردن. نتایج مدل آنها نشان داد که فرضیه وجود وابستگی فضایی در متغیر قیمت واحدهای مسکونی در مدل تایید می‌شود و متغیرهای دسترسی واحدهای مسکونی به حیاتی، مجهز بودن به سیستم‌های گرمایشی و سرمایشی و وضعیت امنیت منطقه اثر مثبت و معناداری بر قیمت واحدهای مسکونی شهر تبریز دارد. همچنین قیمت واحدهای مسکونی دارای مصالح و اسکلت بنی یونیتی و فلزی نسبت به واحدهای مسکونی با مصالح خشکی یا چوبی، دارای قیمت بالاتری هستند. ساختارهای مسکونی با تمامی سطح مرمر نسبت به واحدهای مسکونی با تمامی غیرستاندارد با بدون نما قیمت بالاتری دارد.

همانطور که پیشتر بیان شد، ابزار تحقیق حاضر نسبت به سایر مطالعات بایان شده این است که در این مطالعه نحوه استفاده از یک تحلیل تخلیه پیچیده که مشتمل بر شرایط بیشین، شرایط پسین، مقابسه مدل و بیشینی است، برای یک گروهی غیر خصوصی با چهار متغیر توضیحی و فروش اولیه مطرح می‌گردد.

3. مبانی نظری مربوط به تابع قیمت هدایتک یا تابع قیمت رفاهی مسکن

واژه هدایتک یا ریشه بوناتی هدایتکوس به معنی لذت جویانه گرفته شده است. در اقتصاد رفاه، هدایتک به معنی مطلوبیت یا رضایت کسب شده توسط مصرف کننده از کالا یا خدماتی باشد. روش هدایتک اولین بار توسط گریلیچس برای نظر در مورد تعیین قیمت بناز مسکن و محیط زیستی که کار رفت و به سیاست‌های کارهای نظری لکسارن و ورون ۳ مطرح شد. در الگوی قیمتی هدایتک، یک کالا دارای چند بعد است و چون مسکن نیز جنگ بعدی است و شامل شدید از ویژگی‌های مختلفی می‌باشد لذا استفاده از الگوی قیمت هدایتک در بناز مسکن مناسب است. بنابراین قیمت مسکن تابعی از ویژگی‌های مورد

1. Hedonikos
2. دایره المعارف مراکز
3. Lancaster and Rosen
4. ایوبوزن و همکاران, ۱۳۸۷
استفاده در واحد مسکونی مورد تقاضا توسط خانوار می‌باشد که تابع قیمت هدایتک نامیده می‌شود.

تابع قیمت هدایتک را با $P(Z)$ نشان می‌دهیم که به صورت $P(Z) = P(Z_1, \ldots, Z_n)$ فرض می‌شود که Z به مجموعه‌ای از ویژگی‌های واحد مسکونی مورد نظر بر قیمت بازاری آن را مشخص می‌کند. اگر شرایط حداکثر سود به وسیله پنجم‌هاهای عرضه کننده واحد مسکونی و بهینه سازی رفتار خانوارهای تقاضا کننده واحد مسکونی با هم و تعادل از طریق عرضه و تقاضای واحد مسکونی در نظر گرفته شود، تابع قیمت هدایتک حاصل می‌شود. اگر خانواری برداری از ویژگی‌های فیزیکی، مکانی و محیطی و دیگر کالاها را مصرف کند، از این انتخاب، احساس رضایت کرده و مطمئن می‌شود از رفته برای او حاصل می‌آید که تابع مطلوبی $U = U(X, Z)$ ذکر آن خانوار به صورت $U = U(X, Z_1, Z_2, \ldots, Z_n)$ برنامه‌ریزی، مکانی و محیطی یک واحد مسکونی بوده و X دیگر کالاها است.

$$Max U = U(X, Z_1, Z_2, \ldots, Z_n)$$

$s.t. Y = P(Z) + X$

$$L = U(X, Z_1, Z_2, \ldots, Z_n) + \lambda(Y - X - P(Z))$$

$$\frac{\partial L}{\partial X} = 0 \Rightarrow \frac{\partial U}{\partial X} - \lambda = 0$$

$$\frac{\partial L}{\partial Z_i} = 0 \Rightarrow \frac{\partial U}{\partial Z_i} - \lambda \frac{\partial P(Z)}{\partial Z_i} = 0 \Rightarrow \frac{\partial U}{\partial Z_i} = U_{Zi}$$

$$\frac{\partial L}{\partial \lambda} = 0 \Rightarrow Y - X - P(Z) = 0$$

که داریم:

$$\frac{\partial U}{\partial X} = \frac{1}{P_i} \frac{\partial U}{\partial Z_i}$$

1. ایبوئوری و همکاران، 1387.
حال اگر به منظور سادگی قیمت دیگر کالاها را واحد در نظر بگیریم و در آماده خانوار را $Y = P(Z) + X$ با نشان Y محسوده بتوده خانوار به صورت $P(Z)$ با استفاده از روش لاگرانژ برای حداکثر سازی تابع مطلوبیت با توجه به محسوده بتوده خانوار $P(Z)$ که به عنوان متغیرهای $Z_1, Z_2, ..., Z_n$ و Y و U در آماده خانوار Y به دست می‌آید که θ قیمت پیشنهادی برای خرید Y است.

۴ معرفی مدل بیزین

به طور کلی در روش بیزین با پارامترهای غیر قابل مشاهده مدل‌های آماری، همانتد متغیرهای تصادفی رفتار می‌شود به عبارت دیگر در روش بیزین، پارامترهای مدل را تصادفی در نظر می‌گیرند. اصولاً زمانیکه داده‌های کافی در دسترس نیست و یا حجم داده‌ها بسیار کم است، در این موارد به منظور کمی کردن یا مقداری نمونه‌گیری باید بر حسب یا باور خود در مورد پارامترهای مدل، از یک توزیع پیشین برای پارامترهای مدل استفاده می‌کنیم. در واقع روش بیزین مکانیسمی را جهت اتصال با ترکیب اطلاعات پیشین در مورد پارامترها با اطلاعات حاصل از داده‌های نمونه جهت استباقی پارامترهای مدل افزایش می‌آورد تا درجه باور در مورد پارامترها اصلاح شود. در واقع اگر پارامتر جامعه باشد، آنگاه اطلاعات پیشین را با θ نشان می‌دهم که این توزیع پیشین معمولاً به صورت تجربی تعیین می‌شود و نتایج درست‌نمایی را برای داده‌های مشاهده شده به صورت $L(data|\theta)$ نشان می‌دهم. بعد بر ترتیب اطلاعات پیشین با داده‌ها توسط قانون بیزی، می‌توانیم به سهولت به نتایج چگالی احتمال پیشین به صورت زیر دست یابیم:

1. Likelihood function

اینگونه و میکرایه ۱۳۸۷
در رابطه فوق، موسوم به تابع راستماهی نسبی است و بر ازداردها در دست دارم، می‌توانیم با استفاده از توزیع شرطی پارامترها، اقدام به بررسی رستایی یا به‌طور کلی با بررسی نمودن امکان ارتباط با اتفاق از توزیع پیشین به توزیع به‌طور کلی با توجه به قاعده بیز به صورت زیر صورت می‌گیرد:

\[p(\theta|x) = \frac{p(x|\theta) \cdot p(\theta)}{p(x)} \]

در عبارت فوق، \(p(\theta|x) \): توزیع پسین \(x \); توزیع پیشین \(\theta \); توزیع حاشیه‌ای \(x \) است که تابع لگاریتمی گیری از توزیع تأمین یا مشترک نسبت به پارامتر \(\theta \) به صورت زیر بدست می‌آید:

\[p(\theta|x) = \frac{p(x|\theta) \cdot p(\theta)}{p(x)} = \frac{1}{\int p(x|\theta) \cdot p(\theta) d\theta} \]

به محض اینکه داده \(x \) در دسترس باشد، آنگاه تابع \(\theta \) مقدار ناملایم \(\hat{\theta} \) است و توزیع پسین \(p(\theta|x) \) بیانگر میزان ناشتایی‌های محقق از پارامترهای مدل است. به طور کلی استفاده از اطلاعات پیشین در دسترس به صورت مرتبط و با استفاده از این تابع به‌طور کلی با امکان می‌باشد و لیست اطلاعات پیشین، مستقل از داده‌ها است.

1. Updating
2. Given
3. Unknown quality
همچنین با توجه داشته یکمک را به پارامتر جامعه یا \(\theta \) در برابر اگر برگرده که صفر باشد باشند
\(\theta \in (0, +\infty) \)
آنگاه می‌توان از یک توزیع ذهنی با توزیع پیشین نرمال بر روی پارامترها استفاده نمود ولی در روش بایزیانی آنگاه در روش بایزیانی می‌توان از یک توزیع ذهنی با توزیع پیشین گاما بر روی پارامترها مدل استفاده کرد زیرا توزیع گاما
در ربع مثبت تعريف می‌شود ولذا عموماً برای واریانس (با \(\sigma^2 \)) و عکس آن معنی
\(h = \frac{1}{\sigma^2} \)
همچنین با توجه داشته که عموماً جهت بهبود در محاسبات از توزیع پیشین مزدوج ۱
با مزدوج طبیعی ی استفاده می‌شود. در واقع اغلب خانواده‌ای از توزیع‌ها، برای پارامتر
\(\theta \)
وجود دارد که اگر توزیع پیشین متعلق به این خانواده با کلاس از این توزیع‌ها باشد، آنگاه توزیع پیشین نیز متعلق به همین خانواده با کلاس از توزیع‌ها خواهد بود. که به این
خانواده از توزیع‌ها که در آنها با انتخاب یک نوع از یک خانواده از توزیع پیشین به همان
نوع یا خانواده از توزیع پیشین دست می‌باید، توزیع پیشین مزدوج می‌گویم. به عبارت دیگر توزیع پیشین مزدوج، توزیع‌ی است که با ترکیب نمودن آن با توزیع بردار داده‌ها به توزیع پیشین مزدوج می‌گوییم که دارای همان شکل و نوع توزیع پیشین خواهد بود. مثل اگر توزیع پیشین نرمال باشد، آنگاه توزیع پیشین نرمال خواهد بود. همچنین اگر توزیع پیشین از کلاس یا خانواده نرمال-گاما باشد آنگاه توزیع پیشین نرمال-گاما خواهد بود.

در تحلیل رگرسیون بیزین، در حالتیکه \(\sigma^2 \) معلوم و \(\beta \) و \(\beta \) ماتریس واریانس پیشین مثبت است، \(\beta \) و \(\beta \) نماد پارامترهای توزیع

1. Conjugate
2. Natural conjugate
پسین می باشند $eta$ دارای توزیع نرمال $N(eta, V)$ است. (علامت‌های زیر پارامترهای توزیع β و V نشان دهنده آبر پارامتر یا بودن آنها است) لذا خواهیم داشت:

$$y = X\beta + U$$

$$\beta \sim N(\beta, V)$$

$$y|\beta \sim N(X\beta, \sigma^2 I)$$

$$\beta|y \sim N(\bar{\beta}, V)$$

$$\bar{\beta} = \left[V^{-1} + (\sigma^2(X'X)^{-1})^{-1} \right]^{-1} \left[V^{-1} \beta + (\sigma^2(X'X)^{-1})^{-1} \beta_{MLE} \right] = W\beta + (1-W)\beta_{MLE}$$

$$W = \left[V^{-1} + (\sigma^2(X'X)^{-1})^{-1} \right]^{-1}$$

$$\bar{V} = \left[V^{-1} + (\sigma^2(X'X)^{-1})^{-1} \right]^{-1}$$

tوزیع پسین پارامترها در اینجا نرمال با میانگین β است. \bar{V} دوامی میانگین β است که از تخمین میانگین محدود راست نمایی $eta_{MLE}$ و میانگین توزیع پیشین β حاصل می شود و در آن وزن به صورت زیر است:

$$W = \left[V^{-1} + (\sigma^2(X'X)^{-1})^{-1} \right]^{-1} \times V^{-1}$$

عبارت \bar{V} دوامی V کلی است. درواقع با توزیع به اطلاعات پیشین یا قبلی ما به تخمین های دقیق و کارا برای β کمک می رسم.

$$\bar{V} = \left[V^{-1} + (\sigma^2(X'X)^{-1})^{-1} \right]^{-1} \times V^{-1} \sigma^2(X'X)^{-1}$$

عبارت بالا به این معنی است که واریانس پسین کوچکتر از تک تک واریانس MLE و واریانس پیشین می باشد.

در اینجا قاب از ادامه بحث، ذکر این نکته ضروری است که اصولاً اطلاعات پیشین در مورد پارامترها به سه دسته تقسیم‌بندی می‌شود: پارامترهایی که معلوم فرض می‌شوند و به توزیع پیشین تابیده‌اند متقابل می‌شوند. پارامترهایی با توزیع پیشین فاقد اطلاعات و پارامترهای با توزیع پیشین دارای اطلاع و غير تابیده‌اند.

1. Hyper parameter
2. Degenerate
در ادامه برای تخمین آگر رابطه (6) و در نظر گرفتگیری,

\[P(y | \beta, h) = \frac{1}{(2\pi)^{\frac{h}{2}}} \exp\left(-\frac{1}{2h} (\beta - \hat{\beta}) X X (\beta - \hat{\beta}) \right) \\{ h^2 \exp\left(-\frac{k}{2h^2}\right) \} (6) \]

ضرایب رگرسیون از بیشینه کردن رابطه (6) به دست می‌آید. در این رابطه ترکیبی از ارزش‌های بیشین وجود دارد. لذا اگر یک ارزش بیشین انتخابی برای \(\beta \) مشروط به \(h \) صورت زیر انتخاب شود:

\[\beta | h \sim N(\beta_{\hat{\beta}}, h^{-1}V) \]

و برای \(h \) فرم زیر انتخاب شود:

\[h \sim G(\nu, \rho) \]

آنگاه با توجه به توزیع نرمال گاما داریم:

\[\beta, h \sim NG(\beta_{\hat{\beta}}, V, \nu, \rho) \] (9)

که با توجه به رابطه (6) در اثر که میانگین‌های اولیه ضرایب \(k \) رگرسیون را در بر می‌گیرد و \(V \) یک ماتریس واریانس بیشین مثبت است. بنابراین تابع چگالی بیشین به صورت (8) نیز با میانگین رابطه (6) به همراه مقادیر اولیه مشخص به دست می‌آید.

5. بررسی داده‌ها و تخمین مدل

در این مطالعه از قیمت‌های فروش یکصد و چهل و شش آپارتمان مسکونی فروخته شده در منطقه یک شهر تهران، در سال 1393 استفاده که آماره‌های مربوط از مشاورین املاک منطقه و اتحادیه مشاورین املاک تهران اخذ شده است. برای بررسی اینکه چه عواملی بر قیمت فروش مسکن مؤثر خواهند بود، قیمت فروش مسکن به عنوان متغیر وابسته و چهار متغیر توضیحی اندیشده آپارتمان مسکونی، عمر آپارتمان، اشتی، سوئیچ و سال و وزشی در مجموعه آپارتمانی (به صورت متغیر مجزی) در صورت وجود عدد یک و در صورت عدم وجود صفر) و تعداد پارکینگ (از یک تا چهار پارکینگ) آورده
شده است؛ در منطقه یک تهران بزرگ از واحدهای آپارتمانی چهار پارکینگ دارند، را در
نظر می‌گیریم. متفاوت‌های مربوط به هر یک در ادامه ذکر شده است:

\[\text{۱. قیمت فروش آپارتمان} \text{ام در منطقه یک شهر تهران} \]
\[\text{۲. انداره آپارتمان به متر مربع} \]
\[\text{۳. عمر بنا یا قدمت آپارتمان} \text{ام، به سال} \]
\[\text{۴. داشتن استخر، سونا و روزش در آپارتمان ام} \]
\[\text{۵. تعداد پارکینگ آپارتمان ام} \]

با توجه به اینکه متفاوت مساحت عرضی یا زمینی که پرورش یا مجتمع مسکونی در آن احداث
شده است با متغیر اندازه آپارتمان هماهنگی قوی دارد به همین دلیل در تخمین از وارد
کردن متفاوت مساحت عرضی یا زمین یک پرورش یا مجتمع مسکونی که در آن احداث شده
اجتناب گردید و از متغیر تعداد اتاق خواب نیز به این جهت صرف نظر شد که اصولاً این
متفاوت نیز با متفاوت مساحت زیری بیان اندازه آپارتمان هماهنگی قوی دارد و به طور معمول و
به‌طور فرضی، اکثر سازندگان مسکن در منطقه یک شهر تهران، با توجه به اینکه در این
منطقه واحدهای کوچک زیری یکصد متر به ندرت یافت می‌شود و متوسط اندازه‌های واحد
آپارتمانی حدود ۱۴۰ متر مربع است، می‌دانند که جهت فروش بهتر و آسان‌تر واحدهای
ساخته شده خود، حداقل یکاد واحده مسکونی سه اتاق خواب داشته باشد و از طرف دیگر
در واحدهای آپارتمانی حدود ۱۴۰ متر مربع، افزایش تعداد اتاق خواب‌ها به بیش از سه
اتاق خواب منجر به کاهش مساحت و فضای اختصاص‌یافته باید سالانه پذیرایی و
آشکاره‌اند. می‌شود که به نویض مطلوب خریداران و مشتریان نیست و نویض نقص براه
واحد مسکونی نقل می‌کنم می‌باید، لذا در تعداد اتاق‌های واحد آپارتمانی، سازندگان
منطقه یک، تقییاًً از قدرت متوسط کمی برخوردارند و افترازی تمامی سازندگان تقییاًً در
این زمینه بیشتر است. در واقع این مسئله برای سازندگان به صورت یکی بیش فرض
در آنده، چون این متفاوت در اکثر مشاهدات یا اکثر واحدهای مسکونی برابر است و در
محدودی از مشاهدات برابر به این افتراق است. بنابراین، این متفاوت در اکثر دامنه تغییرات
مناسبی برای توضیح تغییرات متغیر وابسته نمی‌باشد. بنابراین این دلایل از این متغیر نیز در تخمین استفاده نشد.

در ادامه از پرسشنامه برای دستیابی به اطلاعات پیشین استفاده می‌کنم و سوالاتی را از افراد محلی می‌پرسیم. به این صورت که "مثلاً انتظار دارند آپارتمان‌هایی با متر مربع و یا استخر و سوین و دو سال سابقه و دارای یک پارکینگ چقدر پارکینگ؟" با "آپارتمان‌های با متر مربع ۱۸۰ و بدون استخر و سوین و شال ساخت و با دو پارکینگ، انتظار دارد چقدر پارکینگ؟" جهت انجام برایش ها، حضوری یا پیشینه با توجه به شواهد حاصل از نمونه گیری و جمع‌آوری این پرسشنامه‌ها حاصل گردید. از این منظور که داشتن امکانات استخر، سوین و سالن ورزشی در مجمع آپارتمانی به حساب پیشین یا باور قبلی محققین حدود ۳۰۰ میلیون تومان باعث افزایش قیمت واحد مسکونی می‌شود و افزایش هر واحد پارکینگ باعث افزایش حدود ۱۵۰ میلیون تومان در قیمت یا ارزش آپارتمان می‌گردد حال حاضراً که مشخص است در انجا پنج ضریب رگرسیونی نامعلوم وجود دارد و با این ضرایب را برایش‌نماییم. بنابراین در ادامه به دنبال استخراج ضرایب رگرسیونی (\(Y = f(x_1, x_2, x_3, x_4, x_5) \)) با استفاده از روش حداقل مربعات معنی‌برنده با استفاده از وضعیت‌های پیشین دارای اطلاع و پیشین پیشینی بر پیشین با اطلاع‌پذیری نه‌سیم. لذا در دو مرحله با و بدون استفاده از این اطلاعات پیشین ضرایب \(\beta \) برایش‌نمایی‌می‌شود.

البته با بررسی اطلاعات اولیه می‌پردازم. اکثر آپارتمان‌ها در حدود قیمت ۲ تا ۴ میلیارد تومان قیمت‌شده‌اند. از آنجا که جزء خطا به‌صورت نرمال و با تغییرهایی توزیع شده است لذا از \(\sigma = 10^{1.18} \) تخمینی	\((T_{10^{1.18}} = 196000000000000000000000000)\) تومان در دنبای واکنش‌های است. از طرفی \(h = \frac{1}{(100000000000000000000000000)} \) می‌باشد.

چون \(h = \frac{1}{\sigma} \) است و لذا حس اولیه‌برای یکی باشد.
در مورد v نیز ارزش آن را کمتر از $\frac{1}{N}$ تعیین می‌کنیم. در اینجا v در نظر می‌گیریم و حداکثر 1% می‌باشد.

حال اگر دو آمارتامان را با یکدیگر مقایسه کنیم، انتظار داریم آمارتامانی که یکسال نوسانتر از دو می‌باشد، حدود 50 میلیون تومان گرانتر از آمارتامانی باشد که این امکانات را ندارد. با آمارتامانی که بیشتر داشته باشد به اندیشه 150 میلیون تومان گرانتر از آمارتامانی است که این امکانات را ندارد. لازم به ذکر است که همانطور که می‌دانیم در یک توزیع یکپارچه پیوسته در حالتی که $\alpha \leq x \leq b$ ترکیب به صورت $\text{Var}(x) = \frac{(b-a)^2}{12}$ و $E(x) = \frac{a+b}{2}$ است.

در مورد استخراج واریانس ضربی، نیز اگر به عنوان اطلاعات اولیه (پیشین) (اطلاعات اولیه منتج باور و نظر خبرگان و مشاوران املاک منطقه می‌باشد) فرض کنیم که باشد با استفاده از روش حداکثر مربوط معمولی واریانس عرض از مبدا را استخراج کنیم و اگر ما با درجه اعتماد بالای این احتمال را داریم که اثر اندازه آمارتامان در بالا [808888] هست و واریانس آن تقریباً با ارگ مشابه باشد انتظار داریم که اثر افزایش در عمر یا قدمت آمارتامان در بالا [808888] باشد.

اگر با درجه اعتماد بالا و این احتمال را به دست آوریم که داشتن امکانات ورزشی استخراج سرمای و سالان ورزشی در بالا [888888] باشد و واریانس آن تقریباً با انتظار همچنین اگر ما با درجه اعتماد بالا، این احتمال را داریم.

$\text{Var}(\beta_i) = 2.0833 \times 10^{12}$

حال اگر ما با درجه اعتماد بالا، این احتمال را به دست آوریم که داشتن امکانات ورزشی استخراج سرمای و سالان ورزشی در بالا [888888] باشد و واریانس آن تقریباً با انتظار همچنین اگر ما با درجه اعتماد بالا، این احتمال را داریم.

$\text{Var}(\beta_i) = 1.3333 \times 10^{16}$

به صورت زیر است:

$$\text{Var}(\beta) = \frac{\nu \cdot \sigma^2}{\nu - 2} V$$

از طرفی چون $10^{18} \leq \frac{\nu \cdot \sigma^2}{\nu - 2} V$ باشد، لذا ماتریس $\text{Var}(\beta_j)$ برای $j = 1, \ldots, 5$ به صورت زیر در نظر گرفته می‌شود:

$$V = \begin{bmatrix}
0.77 & 0 & 0 & 0 & 0 \\
0 & 0.0000 & 0 & 0 & 0 \\
0 & 0 & 0.0001 & 0 & 0 \\
0 & 0 & 0 & 0.0080 & 0 \\
0 & 0 & 0 & 0 & 0.20
\end{bmatrix}$$

ما تمامی کوواریانس‌های بیشین را در ماتریس فوق برای صفر در نظر گرفتایم که این مستطیل در اغلب مطالعات، مرسوم و متداول است. چون در نظر گرفتایی که بیشین را در صفر ضبط می‌کنیم، البته برای صفر در نظر گرفته می‌توانیم تمامی کوواریانس‌های بیشین در ماتریس فوق برای این معنی است که اطلاعات بیشین ما به عنوان محل قرار برای β ممکن است با β_i برای $i \neq j$ نامیمایند، به دلیل زمینه‌ای که در بسیاری
از موارد این یک فرصت منطقی و معقول است، در واقع تصمیم‌گیری ما از یک پیشین مزدوج طبیعی دارای اطلاع و برای پارامترها، مدل ما یک کامل می‌کند که ما نیاز این مقاله با توجه به توضیحاتی که در فوق مطرح شد و بسته به نیاز خود، از یک رگرسیون خطي نرمال با پیشین مزدوج طبیعی دارای اطلاع استفاده کرده‌ایم.

در ادامه در جدول (1) در وضعیتهای پیشین مبتنی بر پیشین دارای اطلاع و پیشین مبتنی بر پیشین فاقد اطلاع به‌بان نتایج تخمین‌های ضریب و واریانس های β می‌پردازیم. در جدول (1) میانگین پیشین بر پایه اطلاعات اولیه و با توجه به ارتباط میانگین اولیه و تخمین تغییر می‌شود.

<table>
<thead>
<tr>
<th>β_1</th>
<th>نتایج پیشین مبتنی بر پیشین فاقد اطلاع 1</th>
<th>نتایج پیشین مبتنی بر پیشین دارای اطلاع 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_2</td>
<td>0.136</td>
<td>0.1368</td>
</tr>
<tr>
<td>β_3</td>
<td>0.12</td>
<td>0.128</td>
</tr>
<tr>
<td>β_4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>β_5</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

مطابق با نتایج جدول (1) می‌بینیم که نتایج میانگین پیشین مبتنی بر پیشین دارای اطلاع و میانگین پیشین مبتنی بر پیشین فاقد اطلاع و β به ترتیب برای با

1. Specification
2. Informative natural conjugate prior
3. Non informative prior
4. Informative prior
و پس در نتیجه اگر دو آپارتمان را که اولی دارای استخر، سوئینت و سالن بوده ولی دو میلیون این کمکنات را ندارند در نظر بگیریم، انتظار داریم که آپارتمانهای اول تقریباً بین 40 میلیون تا 540 میلیون تومان بیشتر از دو میلیون ارزش داشته باشند. همچنین مطابق با نتایج جدول ۱، ۱۶ آگر متغیر انتظاری ایک و نه افزایش یابد و سایر متغیرهای توصیفی ثابت باشد، قیمت آپارتمان به اندازه βرا درآورده و ۱۵۰ میلیون تومان گرانتر از آپارتمانی باشد که این امکانات را ندارد (ρیک). با آپارتمانی که یک پارکینگ بیشتر داشته باشد به اندازه ۱۵۰ میلیون تومان گرانتر از آپارتمانی است که این امکانات را ندارد، (ρیک) لذا طبق نتایج جدول ۱ و یک تریچ می‌تواند مثل داشتن استخر، سوئینت و سالن ورژنی و تعداد پارکینگ‌ها بتواند بیشترین تأثیر را بر قیمت واخ خانه‌های آپارتمانی مسکونی در منطقه یک شهر تهران دارد.

همچنین نتایج تخمین نشان داد که در حالی استفاهه از توزیع پیشین مبتنی بر بیشین دارای اطلاع، هر یک متر مربع افزایش در مساحت آپارتمان مسکونی تقریباً حدود ۱۲ میلیون و ۵۰۰ هزار تومان به قیمت واحدهای مسکونی می‌افزاید و افزایش هر سالی اضافی در عمر نیا بیشimum که قبل می‌خواهد که با توجه به اینکه متوسط مترال آپارتمان در این منطقه در نموده ۵۵۰ هزار تومان بیشتر است، سه‌صد آپارتمان در قیمت بک کاهش حدود ۷ میلیون تومانی در قیمت هر متر مربع باعث کاهش حدود ۵۸۰ هزار تومانی در قیمت هر متر مربع باعث کاهش حدود ۷ میلیون تومانی در قیمت هر متر مربع باعث کاهش حدود ۵۸۰ هزار تومانی در قیمت هر متر مربع باعث کاهش حدود ۷ میلیون تومانی در قیمت هر متر مربع باعث کاهش حدود ۵۸۰ هزار تومانی در قیمت هر متر مربع باعث کاهش حدود ۷ میلیون تومانی در قیمت هر متر مربع باعث کاهش حدود ۵۸۰ هزار تومانی در قیمت هر متر مربع باعث کاهش حدود ۷ میلیون تومانی در قیمت هر متر مربع باعث کاهش حدود ۵۸۰ هزار تومانی در قیمت هر متر مربع باعث کاهش حدود ۷ میلیون تومانی در قیمت هر متر مربع باعث کاهش حدود ۵۸۰ هزار تومانی در قیمت هر متر مربع باعث کاهش حدود ۷ میلیون تومانی در قیمت هر متر مربع باعث کاهش حدود ۵۸۰ هزار تومانی در قیمت هر متر مربع باعث کاهش حدود ۷ میلیون تومانی در قیمت هر متر مربع باعث کاهش حدود ۵۸۰ هزار تومانی در قیمت هر متر مربع باعث کاهش حدود ۷ میلیون تومانی در قیمت هر متر مربع باعث کاهش حدود ۵۸۰ هزار تومانی در قیمت H ۳ میلیون تومانی در قیمت H ۳ میلیون تومانی در قیمت H ۳ میلیون تومانی در Qیمت H ۳ میلیون Tومانی در Qیمت H ۳ میلیو
1. Highest Posterior Density Interval
2. Posterior odds ratio
لذا حدوداً 90% شانس این وجود دارد که ϱ ≠ ϱ₀ باشد. بنابراین در هر شرایطی و با احتمال 100% در نمونه مورد بررسی در این مقاله قدمت آپارتمان بر قلامت فروش آن موضوع خواهد بود.

جدول 2- مقایسه ای برای β

<table>
<thead>
<tr>
<th>متینی بر پیشین دارای اطلاع</th>
<th>P(β > θ)</th>
<th>95% HPDI</th>
<th>99% HPDI</th>
<th>Posterior odds β₀ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>β₁</td>
<td>0.984</td>
<td>[0.842, 1.12]</td>
<td>[0.784, 1.32]</td>
<td>0.9451</td>
</tr>
<tr>
<td>β₂</td>
<td>1.00</td>
<td>[0.332, 0.658]</td>
<td>[0.158, 0.067]</td>
<td>0</td>
</tr>
<tr>
<td>β₃</td>
<td>0.69</td>
<td>[0.249, 0.417]</td>
<td>[0.083, 0.049]</td>
<td>0</td>
</tr>
<tr>
<td>β₄</td>
<td>0.39</td>
<td>[0.156, 0.118]</td>
<td>[0.053, 0.026]</td>
<td>0</td>
</tr>
<tr>
<td>β₅</td>
<td>0.04</td>
<td>[0.024, 0.00]</td>
<td>[0.001, 0.000]</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>متینی بر پیشین فاقد اطلاع</th>
<th>P(β > θ)</th>
<th>95% HPDI</th>
<th>99% HPDI</th>
<th>Posterior odds β₀ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>β₁</td>
<td>0.975</td>
<td>[0.859, 1.09]</td>
<td>[0.791, 1.30]</td>
<td>-</td>
</tr>
<tr>
<td>β₂</td>
<td>0.94</td>
<td>[0.78, 1.14]</td>
<td>[0.59, 0.94]</td>
<td>-</td>
</tr>
<tr>
<td>β₃</td>
<td>0.85</td>
<td>[0.68, 1.03]</td>
<td>[0.53, 0.86]</td>
<td>-</td>
</tr>
<tr>
<td>β₄</td>
<td>0.70</td>
<td>[0.51, 0.90]</td>
<td>[0.43, 0.74]</td>
<td>-</td>
</tr>
<tr>
<td>β₅</td>
<td>0.50</td>
<td>[0.31, 0.70]</td>
<td>[0.22, 0.56]</td>
<td>-</td>
</tr>
</tbody>
</table>

در ستون آخر جدول (3) نرخ بخت پیشین شانسده نشان دهنده عدم اطمینان موجود در ضرایب در دو مدل مقید و مدل غیرمقید می‌باشد. اگر نرخهای اولیه را با توجه به احتمال پیشین انتخاب کنیم در نتیجه P(M₁: β₃ = θ) = 0.1 به یعنی تقاضا هیچ شانسی وجود ندارد.

1. Posterior odds ratio
به‌عنوان یکی از عوامل موثر در قیمت‌آبروی آپارتمان‌های مسکونی در منطقه شمال شهر تهران، که $0=\beta_1$ باشد و لذا حدود 100% شانس این وجود دارد که $0$$\beta_2$ باشد. بنابراین در هر شرایطی و با احتمال 100% در نمودار مورد بررسی در این مقاله، قدمت آپارتمان بر قیمت فروش آن موثر خواهد بود.

در مرحله بعد به دنبال تعیین بهترین قیمت فروش آپارتمانی با مشخصات خاص هستیم، بدین منظور یک مدل رگرسیون کامل خطی و قیمت فروش آپارتمانی با اندازه 150 مترمربع و با 100 کال قدمت و دارای سوخت و سوئیچ و سانی و رزین و یک پارکینگ را در نظر می‌گیریم. طبق مطالعات مشابه توزیع قابل پیش‌بینی $\text{W}^{0.556828} - 0.7\text{W}^{0.8} - 1274\text{W}^{2}/\text{W}^{2}$

![Diagram](image.png)

نمودار 1- پیش‌بینی چگالی قیمت مسکن

در وضعیتی است که اطلاع اولیه وجود دارد و برای پیشین فاقد اطلاع توزیع قابل پیش‌بینی به صورت $0.5^{10.7} - 0.6^{13.5} - 0.8^{3.6} - 0.9^{1.8}$ می‌باشد. محقق از هر دوی این اطلاعات برای پیش‌بینی قیمت فروش آپارتمان با ویژگی‌های ذکر شده استفاده می‌کند. و به این صورت می‌توان گفت که بهترین قیمت فروش آپارتمان مدل‌کد $0.85\times10^{13.6}$ تومان است، ولی عدم اطمینان نیز به همراه این حدس وجود دارد. در انتها می‌توان نمودار پیش‌بینی را
ینیه چگالی (چکالی پیشگو) قیمت مسکن را ترمیم نمود که به صورت نمودار شماره (۱) ترمیم شده است.

۶. جمع بندی

در این مقاله برای تخمین تابع تقاضا، از روش هدایاتیک از نوع بیزین (با بیزین هدایاتیک) استفاده شده است. با این ترتیب که شده قیمت واحدهای مسکونی تحت تأثیر دو نوع مشخصه فیزیکی و همسایگی قرار می‌گیرند. از جمله نتایج مهم بسته آمده در این مطالعه این است که ویژگی‌های فیزیکی مثل داشتن استخر، سونا و دسترسی و تعداد پارکینگ‌ها که به نوعی نشان دهنده لذت بودن بیشتر واحدهای مسکونی در منطقه یک شرایط تهران است و همچنین از نوعی دیگر حاکی از زیاد بودن بیاضی بیشتر زمین احداثی ورودی مسکونی بوده که به سازندگی کمک اولیه پروره این امکان را داده که بتواند امکانات مذكور را برای هر واحد آپارتمان مسکونی ایجاد نماید. با ترتیب بیشترین تأثیر را بر قیمت یا ارزش واحد آپارتمانی مسکونی در منطقه یک شهر تهران دارد. البته به نظر می‌رسد تعمیم این نتایج به مناطق جنوبی و بایین شهر تهران که عموماً افراد جوان‌ها و یا بایین در آمدی هستند واقعی و درست نمی‌باشد.

نتایج تخمین نشان داد که در حال استفاده از توزیع بیشین دارای اطلاع، هریک مترمربع افزایش در مساحت آپارتمان مسکونی تقیبی حدود ۱۲ میلیون و ۵۰۰ هزار تومان به قیمت یا ارزش واحد مسکونی می‌افزاید، همچنین افزایش هر سال اضافی در عمر بنا یا ساختمان صادمان باعث یک کاهش حدود ۷۵ میلیون تومانی در قیمت واحد مسکونی گردید که با توجه به اینکه متوسط متراز آپارتمان در این منطقه در محدوده ۱۵۰ کارایی، استفاده شده در این مقاله، حدود ۱۴۰ مترمربع است لذا به سهولت می‌توان بیان داشت که هر سال افزایش در قیمت یک آپارتمان مسکونی در منطقه یک شهر تهران به طور متوسط باعث کاهش حدود ۳۵۰ هزار تومانی در قیمت هر متر مربع نمود آپارتمان مسکونی می‌شود.

1. Predictive density
نتایج تخمین ها نشان دادند که داشتن امکانات استخر، سوئین اسوان و سالن ورزشی در مجتمع آپارتمانی که به نوعی نمادی از لوکس بودن واحد مسکونی است باعث افزایش قیمت واحد مسکونی به اندازه حدود ۴۲۰ میلیون تومان می‌شود که با جدی پیشین با دور قابل می‌سازد. در جا حداکثر ۳۰۰ میلیون تومان بود تفاوت قابل ملاحظه‌ای (در حدود ۱۲۰ میلیون تومان) دارد. از این دیدگاه این مطالعه نشان داد که افزایش هر واحد پارکینگی به‌طور میلیون تومان افزایش واحد مسکونی را افزایش می‌دهد. ولی اگر توزیع پیشین فاقد اطلاع باشد افزایش‌های واحد پارکینگی حدود پانصد میلیون تومان بر قیمت هر واحد مسکونی می‌افزاید. در حالی که حداکثر یک بار قابل با پیشین ما این بود که افزایش هر واحد پارکینگی باعث افزایش حدود ۱۵۰ میلیون تومان در قیمت آپارتمان می‌شود. لذا با بررسی کمی تفاوت‌های مسکونی منطقه، مشاهده می‌شود که قیمت واحد مسکونی منطقه، تحت تأثیر درجه‌بندی‌های جغرافیایی واحد مسکونی نظیر مساحت زمین، مساحت زیربنای، لکس بودن ساختاری از نظر داشتن امکاناتی مثل استخر، سوئین و سالن ورزشی و تعداد پارکینگ های پیش‌بینیه است.

بنابراین طبق نتایج برخی در این مقاله، در منطقه پک شهر تهران، با توجه به طرح تفصیلی شهر تهران، برای هر واحد آپارتمانی حداکثر پک پارکینگی باید تأمین شود. همچنین با توجه به اینکه در این منطقه واحدهای کوچکی زیر یکصد متر بنا شده‌اند، حداقل یک واحد مسکونی، به اتاق خواب داشته باشد. از طرف دیگر افزایش تعداد خوابهای به‌طور میلیون تومان بوده ساختاری باشد. از طرف دیگر افزایش واحد آپارتمانی، سازندگان منطقه پک، تقیب‌الی از مکان ملزوم کمی برخوردارند و استراتژی تمامی سازندگان تقیب‌الی در این زمینه یکسان است.

